
Modeling

Simulation

Implementation

Reference
Version 2

For Use with Simulink®

Communications
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Communications Blockset Reference
© COPYRIGHT 2001-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 2001 Online only New for Version 2.0.1 (Release 12.1)
July 2002 Online only Revised for Version 2.5 (Release 13)
October 2004 Online only Revised for Version 2.5.2 (Release 13SP2)

i

Contents

1
Function Reference

Functions — Alphabetical List . 1-2

2
Block Reference

Blocks — By Category . 2-2
Communications Sources . 2-3
Communications Sinks . 2-8
Source Coding . 2-9
Error Detection and Correction . 2-10
Interleaving . 2-15
Modulation . 2-19
Channels . 2-32
RF Impairments . 2-34
Synchronization . 2-35
Basic Communications Functions . 2-36
Utility Functions . 2-39

Blocks — Alphabetical List . 2-40

ii Contents

1
Function Reference

1 Function Reference

1-2

Functions — Alphabetical List
comm_links . 1-3
commlib . 1-4
commstartup . 1-5
randseed . 1-6

comm_links

1-3

1comm_linksPurpose Display library link information for Communications Blockset blocks

Syntax comm_links
comm_links(sys)
comm_links(sys,mode)
ret_blks = comm_links(...)

Description comm_links displays library link information for blocks in the current model
that are linked to the Communications Blockset. For each block in the current
model, comm_links replaces the block name with the full path to the block’s
library link in the Communications Blockset. Blocks linked to the current
Communications Blockset libraries are highlighted in blue. Blocks linked to
older versions of the Simulink portion of the Communications Toolbox are
highlighted in red. Blocks at all levels of the model are analyzed.

A summary report indicating the number of blocks linked to each blockset
version is also displayed in the MATLAB command window. The highlighting
and link display are disabled when the model is executed or saved, or when
comm_links is executed a second time from the MATLAB command line.

comm_links(sys) toggles the display of block links in system sys. If sys is the
current model (gcs), this is the same as the earlier comm_links syntax.

comm_links(sys,mode) directly sets the link display state, where mode can be
'on', 'off', or 'toggle'. The default is 'toggle'.

ret_blks = comm_links(...) returns a structure, each field of which is a cell
array that lists the full paths to blocks’ library links in the Communications
Blockset. The different fields refer to different versions of the libraries.

See Also liblinks (DSP Blockset)

commlib

1-4

1commlibPurpose Open the main Communications Blockset library

Syntax commlib
commlib(n)
commlib n

Description commlib opens the current version of the main Communications Blockset
library.

commlib(n) opens version number n of the main Communications Blockset
library, where n can be either 1.3, 1.5, or 2.5. Version 2.5 refers to the Release
13 Communications Blockset. Version 1.5 refers to the Simulink portion of the
Communications Toolbox 1.5 (Release 11.1). Version 1.3 refers to the Simulink
portion of the Communications Toolbox 1.3 (Release 10).

commlib n is the same as commlib(n).

See Also simulink (Simulink), dsplib (DSP Blockset)

commstartup

1-5

1commstartupPurpose Default Simulink model settings for Communications Blockset

Syntax commstartup

Description commstartup changes the default Simulink model settings to values more
appropriate for the simulation of communication systems. The changes apply
to new models that you create later in the MATLAB session, but not to
previously created models.

Note The DSP Blockset includes a similar dspstartup script, which assigns
different model settings. For modeling communication systems, you should
use commstartup alone.

To install the communications-related model settings each time you start
MATLAB, invoke commstartup from your startup.m file.

To be more specific, the settings in commstartup cause models to:

• Use the ode45 (Dormand-Prince) solver, which is a variable-step solver

• Default to a fixed step size and SingleTasking mode, in case you change the
solver manually to a fixed-step solver

• Use starting and ending times of 0 and Inf, respectively

• Avoid saving time or output information to the workspace

• Produce an error upon detecting an algebraic loop

• Inline parameters and use a loop rolling threshold of 5, in case you use the
Real-Time Workshop® to generate code from the model

See Also startup

randseed

1-6

1randseedPurpose Generate prime numbers for use as random number seeds

Syntax out = randseed;
out = randseed(state);
out = randseed(state, m);
out = randseed(state, m, n);
out = randseed(state, m, n, rmin);
out = randseed(state, m, n, rmin, rmax);

Description The randseed function is designed for producing random prime numbers that
work well as seeds for random source blocks or noisy channel blocks in the
Communications Blockset.

out = randseed generates a random prime number between 31 and 217-1,
using the MATLAB function rand.

out = randseed(state) generates a random prime number after setting the
state of rand to the positive integer state. This syntax produces the same
output for a particular value of state.

out = randseed(state,m) generates a column vector of m random primes.

out = randseed(state,m,n) generates an m-by-n matrix of random primes.

out = randseed(state,m,n,rmin) generates an m-by-n matrix of random
primes between rmin and 217-1.

out = randseed(state,m,n,rmin,rmax) generates an m-by-n matrix of
random primes between rmin and rmax.

Examples To generate a two-element sample-based row vector of random bits using the
Bernoulli Random Binary Generator block, you can set Probability of a zero
to [0.1 0.5] and set Initial seed to randseed(391,1,2).

To generate three streams of random data from three different blocks in a
single model, you can define out = randseed(93,3) in the MATLAB
workspace and then set the three blocks’ Initial seed parameters to out(1),
out(2), and out(3), respectively.

See Also rand, primes

2

Block Reference

Blocks — By Category 2-2
Communications Sources 2-3
Communications Sinks 2-8
Source Coding . 2-9
Error Detection and Correction 2-11
Interleaving . . 2-16
Modulation . 2-20
Channels . 2-33
RF Impairments 2-35
Synchronization 2-36
Basic Communications Functions 2-37
Utility Functions 2-41

2 Block Reference

2-2

Blocks — By Category
This chapter contains detailed descriptions of all Communications Blockset
blocks. It first shows the libraries and lists their contents, and then presents
the block reference entries in alphabetical order. More detailed discussions of
the core libraries’ capabilities are in the “Using the Libraries” section.

Below is the main library of the Communications Blockset. You can open it by
typing commlib at the MATLAB prompt. Each yellow icon in this window
represents a library. In Simulink, double-clicking on a library icon opens the
library.

To access an older version of the library (for example, if you are modifying one
of your legacy models), then you should use one of these alternative syntaxes
of the commlib command.

commlib 1.3 % To open version 1.3
commlib 1.5 % To open version 1.5

2-3

The main library is divided into eleven sublibraries:

• Communications Sources

• Communications Sinks

• Source Coding

• Error Detection and Correction

• Interleaving

• Modulation

• Channels

• RF Impairments

• Synchronization

• Basic Communications Functions

• Utility Functions

Communications Sources
Every communication system contains one or more sources. You can open the
Comm Sources library by double-clicking its icon in the main Communications
Blockset library (commlib), or by typing commsource2 at the MATLAB prompt.

2 Block Reference

2-4

The Comms Sources library contains four sublibraries:

• Controlled Sources, which contains blocks that simulate nonrandom signals
by reading from a file or by simulating a voltage-controlled oscillator (VCO).

• Data Sources, which contains blocks that generate random data to simulate
signal sources.

• Noise Generators, which contains blocks that generate random data to
simulate channel noise.

• Sequence Generators, which contains blocks that generate sequences for
spreading or synchronization in a communication system.

Controlled Sources
You can open the Controlled Sources sublibrary by double-clicking on its icon
in the Comm Sources library (commsource2), or by typing commcontsrc2 at the
MATLAB prompt.

The table below lists and describes the blocks in the Controlled Sources library.
For information about a specific block, see the reference pages that follow.

Block Name Purpose

Discrete-Time VCO Implement a voltage-controlled oscillator
in discrete time

Triggered Read From File Read from a file, refreshing the output at
rising edges of an input signal

Voltage-Controlled Oscillator Implement a voltage-controlled oscillator

2-5

Data Sources
You can open the Data Sources sublibrary by double-clicking on its icon in the
Comm Sources library (commsource2), or by typing commrandsrc2 at the
MATLAB prompt.

The table below lists and describes the blocks in the Data Sources sublibrary.
For information about a specific block, see the reference pages that follow.

Noise Generators
You can open the Noise Generators sublibrary by double-clicking on its icon in
the Comm Sources library (commsource2), or by typing commnoisgen2 at the
MATLAB prompt.

Block Name Purpose

Bernoulli Binary Generator Generate Bernoulli-distributed random
binary numbers

Binary Error Pattern Generator Generate a binary vector while controlling
the number of 1s

Poisson Integer Generator Generate Poisson-distributed random
integers

Random Integer Generator Generate integers randomly distributed in
the range [0, M-1]

2 Block Reference

2-6

The table below lists and describes the blocks in the Noise Generators
sublibrary. For information about a specific block, see the reference pages that
follow.

Sequence Generators
You can open the Sequence Generators sublibrary by double-clicking on its icon
in Comm Sources library (commsource2), or by typing commseqgen2 at the
MATLAB prompt.

Block Name Purpose

Gaussian Noise Generator Generate Gaussian distributed noise with
given mean and variance values

Rayleigh Noise Generator Generate Rayleigh distributed noise

Rician Noise Generator Generate Rician distributed noise

Uniform Noise Generator Generate uniformly distributed noise
between the upper and lower bounds

2-7

The table below lists and describes the blocks in the Sequence Generators
sublibrary. For information about a specific block, see the reference pages that
follow.

Block Name Purpose

Barker Code Generator Generate a Barker Code

Gold Sequence Generator Generate a Gold sequence from a set of
sequences

Kasami Sequence Generator Generate a Kasami sequence from the set
of Kasami sequences

Hadamard Code Generator Generate a Hadamard code from an
orthogonal set of codes

OVSF Code Generator Generate an orthogonal variable
spreading factor (OVSF) code from a set of
orthogonal codes

PN Sequence Generator Generate a pseudonoise sequence

Walsh Code Generator Generate a Walsh code from an orthogonal
set of codes

2 Block Reference

2-8

Communications Sinks
The Comm Sinks library provides sinks and display devices that facilitate
analysis of communication system performance. You can open the Comm Sinks
library by double-clicking on its icon in the main Communications Blockset
library (commlib), or by typing commsink2 at the MATLAB prompt.

The table below lists and describes the blocks in the Comm Sinks library. For
information about a specific block, see the reference pages that follow.

Block Name Purpose

Error Rate Calculation Compute the bit error rate or symbol error rate
of input data

Continuous-Time Eye and
Scatter Diagrams

Produce eye diagram, scatter, or x-y plots, using
trigger to set decision timing

Discrete-Time Eye Diagram
Scope

Display multiple traces of a modulated signal

Discrete-Time Scatter Plot
Scope

Display a modulated signal in its signal space
by plotting its in-phase component versus its
quadrature component

2-9

Source Coding
This blockset supports companders, scalar quantization and predictive
quantization. You can open the Source Coding library by double-clicking on its
icon in the main Communications Blockset library (commlib), or by typing
commsrccod2 at the MATLAB prompt.

Discrete-Time Signal
Trajectory Scope

Display a modulated signal in its signal space
by plotting its in-phase component versus its
quadrature component

Triggered Write to File Write to a file at each rising edge of an input
signal

Block Name (Continued) Purpose (Continued)

2 Block Reference

2-10

The table below lists and describes the blocks in the Source Coding library. For
information about a specific block, see the reference pages that follow.

Error Detection and Correction
The Error Detection and Correction library contains three sublibraries:

• Block, which contains blocks that implement the encoding and decoding of
linear, cyclic, BCH, Hamming, and Reed-Solomon codes

• Convolutional, which contains blocks that implement convolutional encoding
and decoding

• CRC, which contains blocks that append cyclic redundancy check (CRC) bits
to data, and detect errors

Block Name Purpose

A-Law Compressor Implement A-law compressor for source
coding

A-Law Expander Implement A-law expander for source coding

Differential Decoder Decode a binary signal using differential
coding technique.

Differential Encoder Encode a binary signal using differential
coding technique.

DPCM Decoder Decode differential pulse code modulation

DPCM Encoder Encode using differential pulse code
modulation

Mu-Law Compressor Implement m-law compressor for source
coding

Mu-Law Expander Implement m-law expander for source coding

Quantizer Decode Decode quantization index according to
codebook

Sampled Quantizer Encode Quantize a signal, indicating quantization
index, coded signal, and distortion

Enabled Quantizer Encode Quantize a signal, using trigger to control
processing

2-11

The main Error Detection and Correction library appears below. You can open
it by double-clicking on its icon in the main Communications Blockset library
(commlib), or by typing commedac2 at the MATLAB prompt. Each icon in the
Error Detection and Correction window represents a sublibrary. In Simulink,
double-clicking on one of these icons opens the sublibrary.

Block Coding
You can open the Block sublibrary by double-clicking on the Block icon in the
main Error Detection and Correction library, or by typing commblkcod2 at the
MATLAB prompt.

2 Block Reference

2-12

The table below lists and describes the blocks in the Block sublibrary of the
Error Detection and Correction library. For information about a specific block,
see the reference pages that follow.

Block Name Purpose

BCH Decoder Decode a BCH code to recover binary
vector data

BCH Encoder Create a BCH code from binary vector
data

Binary Cyclic Decoder Decode a systematic cyclic code to
recover binary vector data

Binary Cyclic Encoder Create a systematic cyclic code from
binary vector data

Binary-Output RS Decoder Decode a Reed-Solomon code to recover
binary vector data

Binary-Input RS Encoder Create a Reed-Solomon code from binary
vector data

Binary Linear Decoder Decode a linear block code to recover
binary vector data

Binary Linear Encoder Create a linear block code from binary
vector data

Hamming Decoder Decode a Hamming code to recover
binary vector data

Hamming Encoder Create a Hamming code from binary
vector data

Integer-Output RS Decoder Decode a Reed-Solomon code to recover
integer vector data

Integer-Input RS Encoder Create a Reed-Solomon code from
integer vector data

2-13

Convolutional Coding
You can open the Convolutional sublibrary by double-clicking on the
Convolutional icon in the main Error Detection and Correction library, or by
typing commcnvcod2 at the MATLAB prompt.

The table below lists and describes the blocks in the Convolutional sublibrary
of the Error Detection and Correction library. For information about a specific
block, see the reference pages that follow.

Cyclic Redundancy Check Coding
You can open the CRC sublibrary by double-clicking on the CRC icon in the
main Error Detection and Correction library, or by typing commcrc2 at the
MATLAB prompt.

Block Name Purpose

APP Decoder Decode a convolutional code using the a
posteriori probability (APP) method

Convolutional Encoder Create a convolutional code from binary data

Viterbi Decoder Decode convolutionally encoded data using the
Viterbi algorithm

2 Block Reference

2-14

The table below lists and describes the blocks in the CRC sublibrary of the
Error Detection and Correction library. For information about a specific block,
see the reference pages that follow.

Block Name Purpose

CRC-N Generator Generate CRC bits according to the
selected CRC method and append them
to input data

CRC-N Syndrome Detector Detect errors in the input data according
to the specified CRC method

General CRC Generator Generate CRC bits according to the
generator polynomial and append them
to input data

General CRC Syndrome Detector Detect errors in the input data according
to the generator polynomial

2-15

Interleaving
The Interleaving library contains two sublibraries:

• Block

• Convolutional

The main Interleaving library appears below. You can open it by
double-clicking on its icon in the main Communications Blockset library
(commlib), or by typing comminterleave2 at the MATLAB prompt. Each icon in
the Interleaving window represents a sublibrary. In Simulink, double-clicking
on one of these icons opens the sublibrary.

Block Interleaving
You can open the Block sublibrary by double-clicking on the Block icon in the
main Interleaving library, or by typing commblkintrlv2 at the MATLAB
prompt.

2 Block Reference

2-16

The table below lists and describes the blocks in the Block sublibrary of the
Interleaving library. For information about a specific block, see the reference
pages that follow.

Block Name Purpose

Algebraic Deinterleaver Restore ordering of the input symbols
using algebraically derived permutation

Algebraic Interleaver Reorder the input symbols using
algebraically derived permutation table

General Block Deinterleaver Restore ordering of the symbols in the
input vector

General Block Interleaver Reorder the symbols in the input vector

2-17

Convolutional Interleaving
You can open the Convolutional sublibrary by double-clicking on the
Convolutional icon in the main Interleaving library, or by typing
commcnvintrlv2 at the MATLAB prompt.

Matrix Deinterleaver Permute input symbols by filling a
matrix by columns and emptying it by
rows

Matrix Helical Scan Deinterleaver Restore ordering of input symbols by
filling a matrix along diagonals

Matrix Helical Scan Interleaver Permute input symbols by selecting
matrix elements along diagonals

Matrix Interleaver Permute input symbols by filling a
matrix by rows and emptying it by
columns

Random Deinterleaver Restore ordering of the input symbols
using a random permutation

Random Interleaver Reorder the input symbols using a
random permutation

Block Name (Continued) Purpose (Continued)

2 Block Reference

2-18

The table below lists and describes the blocks in the Convolutional sublibrary
of the Interleaving library. For information about a specific block, see the
reference pages that follow.

Block Name Purpose

Convolutional Deinterleaver Restore ordering of symbols that were
permuted using shift registers

Convolutional Interleaver Permute input symbols using a set of
shift registers

General Multiplexed Deinterleaver Restore ordering of symbols using
specified-delay shift registers

General Multiplexed Interleaver Permute input symbols using a set of
shift registers with specified delays

Helical Deinterleaver Restore ordering of symbols permuted by
a helical interleaver

Helical Interleaver Permute input symbols using a helical
array

2-19

Modulation
The Modulation library contains four sublibraries, each of which addresses a
category of modulation:

• Digital Baseband Modulation

• Analog Baseband Modulation

• Digital Passband Modulation

• Analog Passband Modulation

The main Modulation library appears below. You can open it by double-clicking
on its icon in the main Communications Blockset library (commlib), or by
typing commmod2 at the MATLAB prompt. Each icon in the Modulation window
represents a sublibrary. In Simulink, double-clicking on one of these icons
opens the sublibrary.

The first column shows the sublibraries for baseband simulation; the second
column shows the sublibraries for passband simulation. The first row shows
the sublibraries for digital modulation and demodulation. The second row
shows the sublibraries for analog modulation and demodulation.

Digital Baseband Modulation
You can open the Digital Baseband sublibrary of Modulation by double-clicking
on the Digital Baseband icon in the main Modulation library, or by typing
commdigbbnd2 at the MATLAB prompt.

2 Block Reference

2-20

Digital Baseband is further divided into sublibraries according to specific
modulation techniques:

• Amplitude modulation (PAM, QAM)

• Phase modulation (PSK, DPSK)

• Frequency modulation (FSK)

• Continuous phase modulation (MSK, GMSK)

The figures and tables below show and list the blocks in the method-specific
sublibraries. For information about a specific block, see the reference pages
that follow.

AM Sublibrary

2-21

PM Sublibrary

Block Name Purpose

General QAM Demodulator
Baseband

Demodulate QAM-modulated data

General QAM Modulator
Baseband

Modulate using quadrature amplitude
modulation

M-PAM Demodulator Baseband Demodulate PAM-modulated data

M-PAM Modulator Baseband Modulate using M-ary pulse amplitude
modulation

Rectangular QAM Demodulator
Baseband

Demodulate QAM-modulated data

Rectangular QAM Modulator
Baseband

Modulate using M-ary quadrature
amplitude modulation

2 Block Reference

2-22

Block Name Purpose

BPSK Demodulator Baseband Demodulate BPSK-modulated data

BPSK Modulator Baseband Modulate using the binary phase shift
keying method

DBPSK Demodulator Baseband Demodulate DBPSK-modulated data

DBPSK Modulator Baseband Modulate using the differential binary
phase shift keying method

DQPSK Demodulator Baseband Demodulate DQPSK-modulated data

DQPSK Modulator Baseband Modulate using the differential
quaternary phase shift keying method

M-DPSK Demodulator Baseband Demodulate DPSK-modulated data

M-DPSK Modulator Baseband Modulate using the M-ary differential
phase shift keying method

M-PSK Demodulator Baseband Demodulate PSK-modulated data

M-PSK Modulator Baseband Modulate using the M-ary phase shift
keying method

OQPSK Demodulator Baseband Demodulate OQPSK-modulated data

OQPSK Modulator Baseband Modulate using the offset quadrature
phase shift keying method

QPSK Demodulator Baseband Demodulate QPSK-modulated data

QPSK Modulator Baseband Modulate using the quaternary phase
shift keying method

2-23

FM Sublibrary

Block Name Purpose

M-FSK Demodulator Baseband Demodulate FSK-modulated data

M-FSK Modulator Baseband Modulate using the M-ary frequency
shift keying method

2 Block Reference

2-24

CPM Sublibrary

Block Name Purpose

CPFSK Demodulator Baseband Demodulate CPFSK-modulated data

CPFSK Modulator Baseband Modulate using the continuous phase
frequency shift keying method

CPM Demodulator Baseband Demodulate CPM-modulated data

CPM Modulator Baseband Modulate using continuous phase
modulation

GMSK Demodulator Baseband Demodulate GMSK-modulated data

GMSK Modulator Baseband Modulate using the Gaussian minimum
shift keying method

2-25

Analog Baseband Modulation
You can open the Analog Baseband sublibrary of Modulation by double-clicking
on the Analog Baseband icon in the main Modulation library, or by typing
commanabbnd2 at the MATLAB prompt.

MSK Demodulator Baseband Demodulate MSK-modulated data

MSK Modulator Baseband Modulate using the minimum shift
keying method

Block Name (Continued) Purpose (Continued)

2 Block Reference

2-26

The table below lists and describes the blocks in the Analog Baseband
sublibrary of the Modulation library. For information about a specific block, see
the reference pages that follow.

Digital Passband Modulation
You can open the Digital Passband sublibrary of Modulation by double-clicking
on the Digital Passband icon in the main Modulation library, or by typing
commdigpbnd2 at the MATLAB prompt.

Block Name Purpose

DSB AM Demodulator
Baseband

Demodulate DSB-AM-modulated data

DSB AM Modulator Baseband Modulate using double-sideband amplitude
modulation

DSBSC AM Demodulator
Baseband

Demodulate DSBSC-AM-modulated data

DSBSC AM Modulator
Baseband

Modulate using double-sideband
suppressed-carrier amplitude modulation

FM Demodulator Baseband Demodulate FM-modulated data

FM Modulator Baseband Modulate using frequency modulation

PM Demodulator Baseband Demodulate PM-modulated data

PM Modulator Baseband Modulate using phase modulation

SSB AM Demodulator
Baseband

Demodulate SSB-AM-modulated data

SSB AM Modulator Baseband Modulate using single-sideband amplitude
modulation

2-27

Digital Passband is further divided into sublibraries according to specific
modulation techniques:

• Amplitude modulation (PAM, QAM)

• Phase modulation (PSK, DPSK)

• Frequency modulation (FSK)

• Continuous phase modulation (MSK, GMSK)

The figures and tables below show and list the blocks in the method-specific
sublibraries. For information about a specific block, see the reference pages
that follow.

AM Sublibrary

2 Block Reference

2-28

PM Sublibrary

Block Name Purpose

General QAM Demodulator
Passband

Demodulate QAM-modulated data

General QAM Modulator Passband Modulate using the pulse amplitude
modulation phase shift keying method

M-PAM Demodulator Passband Demodulate PAM-modulated data

M-PAM Modulator Passband Modulate using M-ary pulse amplitude
modulation

Rectangular QAM Demodulator
Passband

Demodulate QAM-modulated data

Rectangular QAM Modulator
Passband

Modulate using M-ary quadrature
amplitude modulation

2-29

FM Sublibrary

Block Name Purpose

M-DPSK Demodulator Passband Demodulate DPSK-modulated data

M-DPSK Modulator Passband Modulate using the M-ary differential
phase shift keying method

M-PSK Demodulator Passband Demodulate PSK-modulated data

M-PSK Modulator Passband Modulate using the M-ary phase shift
keying method

OQPSK Demodulator Passband Demodulate OQPSK-modulated data

OQPSK Modulator Passband Modulate using the offset quadrature
phase shift keying method

Block Name Purpose

M-FSK Demodulator Passband Modulate using the M-ary frequency
shift keying method

M-FSK Modulator Passband Modulate using the M-ary frequency
shift keying method

2 Block Reference

2-30

CPM Sublibrary

Block Name Purpose

CPFSK Demodulator Passband Demodulate CPFSK-modulated data

CPFSK Modulator Passband Modulate using the continuous phase
frequency shift keying method

CPM Demodulator Passband Demodulate CPM-modulated data

CPM Modulator Passband Modulate using continuous phase
modulation

GMSK Demodulator Passband Demodulate GMSK-modulated data

GMSK Modulator Passband Modulate using the Gaussian minimum
shift keying method

2-31

Analog Passband Modulation
You can open the Analog Passband sublibrary of Modulation by double-clicking
on the Analog Passband icon in the main Modulation library, or by typing
commanapbnd2 at the MATLAB prompt.

MSK Demodulator Passband Demodulate MSK-modulated data

MSK Modulator Passband Modulate using the minimum shift
keying method

Block Name (Continued) Purpose (Continued)

2 Block Reference

2-32

The table below lists and describes the blocks in the Analog Passband
sublibrary of the Modulation library. For information about a specific block, see
the reference pages that follow.

Channels
The Channels library provides passband and baseband channels. You can open
the Channels library by double-clicking on its icon in the main
Communications Blockset library (commlib), or by typing commchan2 at the
MATLAB prompt.

Block Name Purpose

DSB AM Demodulator
Passband

Demodulate DSB-AM-modulated data

DSB AM Modulator Passband Modulate using double-sideband amplitude
modulation

DSBSC AM Demodulator
Passband

Demodulate DSBSC-AM-modulated data

DSBSC AM Modulator
Passband

Modulate using double-sideband
suppressed-carrier amplitude modulation

FM Demodulator Passband Demodulate FM-modulated data

FM Modulator Passband Modulate using frequency modulation

PM Demodulator Passband Demodulate PM-modulated data

PM Modulator Passband Modulate using phase modulation

SSB AM Demodulator
Passband

Demodulate SSB-AM-modulated data

SSB AM Modulator Passband Modulate using single-sideband amplitude
modulation

2-33

The table below lists and describes the blocks in the Channels library. For
information about a specific block, see the reference pages that follow.

Block Name Purpose

AWGN Channel Add white Gaussian noise to the input signal

Binary Symmetric Channel Introduce binary errors

Multipath Rayleigh Fading
Channel

Simulate a multipath Rayleigh fading
propagation channel

Rician Fading Channel Simulate a Rician fading propagation channel

2 Block Reference

2-34

RF Impairments
The RF Impairments library provides blocks that simulate radio frequency
(RF) impairments at the receiver. You can open the RF Impairments library by
double-clicking on its icon in the main Communications Blockset library
(commlib), or by typing commrflib2 at the MATLAB prompt.

The table below lists and describes the blocks in the RF Impairments library.
For information about a specific block, see the reference pages that follow.

Block Name Purpose

Free Space Path Loss Reduce the amplitude of the input signal by the
amount specified

I/Q Imbalance Create a complex baseband model of the signal
impairments caused by imbalances between
in-phase and quadrature receiver components

Memoryless Nonlinearity Apply a memoryless nonlinearity to a complex
baseband signal.

Phase/Frequency Offset Apply phase and frequency offsets to a complex
baseband signal.

2-35

Synchronization
The Synchronization library provides four phase-locked loop models. You can
open the Synchronization library by double-clicking on its icon in the main
Communications Blockset library (commlib), or by typing commsync2 at the
MATLAB prompt.

The table below lists and describes the blocks in the Synchronization library.
For information about a specific block, see the reference pages that follow.

Phase Noise Apply receiver phase noise to a complex
baseband signal

Receiver Thermal Noise Apply receiver thermal noise to a complex
baseband signal

Block Name Purpose

Baseband PLL Implement a baseband phase-locked loop

Charge Pump PLL Implement a charge pump phase-locked loop
using a digital phase detector

Linearized Baseband PLL Implement a linearized version of a baseband
phase-locked loop

Phase-Locked Loop Implement a phase-locked loop to recover the
phase of the input signal

Block Name (Continued) Purpose (Continued)

2 Block Reference

2-36

Basic Communications Functions
The Basic Comm Functions library contains these sublibraries:

• Integrators

• Sequence Operations

The main Basic Comm Functions library appears below. You can open it by
double-clicking on its icon in the main Communications Blockset library
(commlib), or by typing commbasic2 at the MATLAB prompt. Each icon in the
Basic Comm Functions window represents a sublibrary. In Simulink,
double-clicking on one of these icons opens the sublibrary.

Integrators
You can open the Integrators sublibrary by double-clicking on the Integrators
icon in the main Basic Comm Functions library, or by typing comminteg2 at the
MATLAB prompt.

2-37

The table below lists and describes the blocks in the Integrators library. For
information about a specific block, see the reference pages that follow.

Sequence Operations
You can open the Sequence Operations sublibrary by double-clicking on the
Sequence Operations icon in the main Basic Comm Functions library, or by
typing commsequence2 at the MATLAB prompt.

Block Name Purpose

Discrete Modulo Integrator Integrate in discrete time and reduce by a
modulus

Integrate and Dump Integrate, resetting to zero periodically and
reducing by a modulus

Modulo Integrator Integrate in continuous time and reduce by a
modulus

Windowed Integrator Integrate over a time window of fixed length

2 Block Reference

2-38

The table below lists and describes the blocks in the Sequence Operations
library. For information about a specific block, see the reference pages that
follow.

Block Name Purpose

Complex Phase
Difference

Output the phase difference between the two
complex input signals

Complex Phase Shift Shift the phase of the complex input signal by the
second input value

Deinterlacer Distribute elements of input vector alternately
between two output vectors

Derepeat Reduce sampling rate by averaging consecutive
samples

Descrambler Descramble the input signal

Insert Zero Distribute input elements in output vector

Interlacer Alternately select elements from two input vectors
to generate output vector

Puncture Output the elements which correspond to 1s in the
binary Puncture vector

Repeat Resample an input at a higher rate by repeating
values

Scrambler Scramble the input signal

2-39

Utility Functions
You can open the Utility Functions library by double-clicking on its icon in the
main Communications Blockset library (commlib), or by typing commutil2 at
the MATLAB prompt.

The table below lists and describes the blocks in the Utility Functions library.
For information about a specific block, see the reference pages that follow.

Block Name Purpose

Bipolar to Unipolar
Converter

Map a vector of bits to a corresponding vector of
integers

Bit to Integer Converter Map a vector of bits to a corresponding vector of
integers

dB Conversion Convert magnitude data to decibels (dB or dBm)

Data Mapper Map integer symbols from one coding scheme to
another

Integer to Bit Converter Map a vector of integers to a vector of bits

Unipolar to Bipolar
Converter

Map a unipolar signal in the range [0, M-1] into a
bipolar signal

2

2-40

Blocks — Alphabetical List 2

A-Law Compressor . 2-45
A-Law Expander . 2-47
Algebraic Deinterleaver . 2-49
Algebraic Interleaver . 2-51
APP Decoder . 2-54
AWGN Channel . 2-58
Barker Code Generator . 2-64
Baseband PLL . 2-66
BCH Decoder . 2-68
BCH Encoder . 2-70
Bernoulli Binary Generator . 2-72
Binary Cyclic Decoder . 2-74
Binary Cyclic Encoder . 2-76
Binary Error Pattern Generator . 2-78
Binary-Input RS Encoder . 2-81
Binary Linear Decoder . 2-85
Binary Linear Encoder . 2-87
Binary-Output RS Decoder . 2-88
Binary Symmetric Channel . 2-91
Bipolar to Unipolar Converter . 2-92
Bit to Integer Converter . 2-94
BPSK Demodulator Baseband . 2-95
BPSK Modulator Baseband . 2-97
Charge Pump PLL . 2-99
Complex Phase Difference . 2-102
Complex Phase Shift . 2-103
Continuous-Time Eye and Scatter Diagrams . 2-104
Convolutional Deinterleaver . 2-108
Convolutional Encoder . 2-110
Convolutional Interleaver . 2-112
CPFSK Demodulator Baseband . 2-114
CPFSK Demodulator Passband . 2-117
CPFSK Modulator Baseband . 2-121
CPFSK Modulator Passband . 2-124
CPM Demodulator Baseband . 2-128

Blocks — Alphabetical List

2-41

CPM Demodulator Passband . 2-133
CPM Modulator Baseband . 2-138
CPM Modulator Passband . 2-143
CRC-N Generator . 2-148
CRC-N Syndrome Detector . 2-150
Data Mapper . 2-152
DBPSK Demodulator Baseband . 2-155
DBPSK Modulator Baseband . 2-157
Deinterlacer . 2-159
Derepeat . 2-160
Descrambler . 2-163
Differential Decoder . 2-165
Differential Encoder . 2-166
Discrete Modulo Integrator . 2-167
Discrete-Time Eye Diagram Scope . 2-169
Discrete-Time Scatter Plot Scope . 2-181
Discrete-Time Signal Trajectory Scope . 2-190
Discrete-Time VCO . 2-199
DPCM Decoder . 2-201
DPCM Encoder . 2-203
DQPSK Demodulator Baseband . 2-205
DQPSK Modulator Baseband . 2-207
DSB AM Demodulator Baseband . 2-211
DSB AM Demodulator Passband . 2-213
DSB AM Modulator Baseband . 2-215
DSB AM Modulator Passband . 2-216
DSBSC AM Demodulator Baseband . 2-218
DSBSC AM Demodulator Passband . 2-220
DSBSC AM Modulator Baseband . 2-222
DSBSC AM Modulator Passband . 2-223
Enabled Quantizer Encode . 2-225
Error Rate Calculation . 2-227
FM Demodulator Baseband . 2-234
FM Demodulator Passband . 2-236
FM Modulator Baseband . 2-238
Free Space Path Loss . 2-240
FM Modulator Passband . 2-243

2

2-42

Gaussian Noise Generator . 2-245
General Block Deinterleaver . 2-249
General Block Interleaver . 2-251
General CRC Generator . 2-252
General CRC Syndrome Detector . 2-255
General Multiplexed Deinterleaver . 2-258
General Multiplexed Interleaver . 2-260
General QAM Demodulator Baseband . 2-262
General QAM Demodulator Passband . 2-264
General QAM Modulator Baseband . 2-267
General QAM Modulator Passband . 2-269
GMSK Demodulator Baseband . 2-272
GMSK Demodulator Passband . 2-275
GMSK Modulator Baseband . 2-278
GMSK Modulator Passband . 2-281
Gold Sequence Generator . 2-284
Hadamard Code Generator . 2-291
Hamming Decoder . 2-294
Hamming Encoder . 2-296
Helical Deinterleaver . 2-298
Helical Interleaver . 2-301
Insert Zero . 2-304
Integer-Input RS Encoder . 2-307
Integer-Output RS Decoder . 2-311
Integer to Bit Converter . 2-314
Integrate and Dump . 2-315
Interlacer . 2-317
I/Q Imbalance . 2-318
Kasami Sequence Generator . 2-323
Linearized Baseband PLL . 2-330
Matrix Deinterleaver . 2-332
Matrix Helical Scan Deinterleaver . 2-334
Matrix Helical Scan Interleaver . 2-336
Matrix Interleaver . 2-339
M-DPSK Demodulator Baseband . 2-341
M-DPSK Demodulator Passband . 2-344
M-DPSK Modulator Baseband . 2-347

Blocks — Alphabetical List

2-43

M-DPSK Modulator Passband . 2-351
Memoryless Nonlinearity . 2-354
M-FSK Demodulator Baseband . 2-364
M-FSK Demodulator Passband . 2-367
M-FSK Modulator Baseband . 2-370
M-FSK Modulator Passband . 2-373
Modulo Integrator . 2-377
M-PAM Demodulator Baseband . 2-378
M-PAM Demodulator Passband . 2-381
M-PAM Modulator Baseband . 2-385
M-PAM Modulator Passband . 2-389
M-PSK Demodulator Baseband . 2-393
M-PSK Demodulator Passband . 2-396
M-PSK Modulator Baseband . 2-399
M-PSK Modulator Passband . 2-404
MSK Demodulator Baseband . 2-407
MSK Demodulator Passband . 2-409
MSK Modulator Baseband . 2-412
MSK Modulator Passband . 2-414
Mu-Law Compressor . 2-417
Mu-Law Expander . 2-418
Multipath Rayleigh Fading Channel . 2-419
OQPSK Demodulator Baseband . 2-422
OQPSK Demodulator Passband . 2-424
OQPSK Modulator Baseband . 2-427
OQPSK Modulator Passband . 2-430
OVSF Code Generator . 2-433
Phase/Frequency Offset . 2-438
Phase-Locked Loop . 2-443
Phase Noise . 2-446
PM Demodulator Baseband . 2-450
PM Demodulator Passband . 2-452
PM Modulator Baseband . 2-454
PM Modulator Passband . 2-455
PN Sequence Generator . 2-457
Poisson Integer Generator . 2-465
Puncture . 2-468

2

2-44

QPSK Demodulator Baseband . 2-470
QPSK Modulator Baseband . 2-472
Quantizer Decode . 2-475
Random Deinterleaver . 2-476
Random Integer Generator . 2-477
Random Interleaver . 2-480
Rayleigh Noise Generator . 2-481
Receiver Thermal Noise . 2-484
Rectangular QAM Demodulator Baseband . 2-488
Rectangular QAM Demodulator Passband . 2-491
Rectangular QAM Modulator Baseband . 2-495
Rectangular QAM Modulator Passband . 2-499
Rician Fading Channel . 2-503
Rician Noise Generator . 2-506
Sampled Quantizer Encode . 2-510
Scatter Plot . 2-512
Scrambler . 2-513
SSB AM Demodulator Baseband . 2-515
SSB AM Demodulator Passband . 2-517
SSB AM Modulator Baseband . 2-519
SSB AM Modulator Passband . 2-522
Tanh Nonlinearity . 2-525
Triggered Read From File . 2-526
Triggered Write to File . 2-529
Uniform Noise Generator . 2-531
Unipolar to Bipolar Converter . 2-534
Viterbi Decoder . 2-536
Voltage-Controlled Oscillator . 2-541
Walsh Code Generator . 2-543
Windowed Integrator . 2-546

A-Law Compressor

2-45

2A-Law Compressor Purpose Implement A-law compressor for source coding

Library Source Coding

Description The A-Law Compressor block implements an A-law compressor for the input
signal. The formula for the A-law compressor is

where A is the A-law parameter of the compressor, V is the peak signal
magnitude for x, log is the natural logarithm, and sgn is the signum function
(sign in MATLAB).

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes each vector
element independently.

Dialog Box

A value
The A-law parameter of the compressor.

y

A x
1 Alog+
---------------------- x()sgn

V 1 A x V⁄()log+()
1 Alog+

--- x()sgn

 for 0 x V
A
----≤ ≤

 for V
A
---- x V≤<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

A-Law Compressor

2-46

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output
signal.

Pair Block A-Law Expander

See Also Mu-Law Compressor

References [1] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

A-Law Expander

2-47

2A-Law Expander Purpose Implement A-law expander for source coding

Library Source Coding

Description The A-Law Expander block recovers data that the A-Law Compressor block
compressed. The formula for the A-law expander, shown below, is the inverse
of the compressor function.

The input can have any shape or frame status. This block processes each vector
element independently.

Dialog Box

A value
The A-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output
signal.

Match these parameters to the ones in the corresponding A-Law Compressor
block.

x

y 1 Alog+()
A

e y 1 Alog+() V⁄ 1– V
A
---- y()sgn

 for 0 y V
1 Alog+
----------------------≤ ≤

 for V
1 Alog+
---------------------- y V≤<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

A-Law Expander

2-48

Pair Block A-Law Compressor

See Also Mu-Law Expander

References [1] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

Algebraic Deinterleaver

2-49

2Algebraic DeinterleaverPurpose Restore ordering of the input symbols using algebraically derived permutation

Library Block sublibrary of Interleaving

Description The Algebraic Deinterleaver block restores the original ordering of a sequence
that was interleaved using the Algebraic Interleaver block. In typical usage,
the parameters in the two blocks have the same values.

The Number of elements parameter, N, indicates how many numbers are in
the input vector.If the input is frame-based, then it must be a column vector.

The Type parameter indicates the algebraic method that the block uses to
generate the appropriate permutation table. Choices are Takeshita-Costello
and Welch-Costas. Each of these methods has parameters and restrictions
that are specific to it; these are described on the reference page for the
Algebraic Interleaver block.

Dialog Box

Type
The type of permutation table that the block uses for deinterleaving.
Choices are Takeshita-Costello and Welch-Costas.

Algebraic Deinterleaver

2-50

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the corresponding interleaver’s cycle vector.
This field appears only if Type is set to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the
corresponding interleaver’s permutation table. This field appears only if
Type is set to Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only
if Type is set to Welch-Costas.

Pair Block Algebraic Interleaver

See Also General Block Deinterleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer
Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. “New Classes Of Algebraic
Interleavers for Turbo-Codes.” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, Aug. 16-21, 1998. 419.

Algebraic Interleaver

2-51

2Algebraic InterleaverPurpose Reorder the input symbols using algebraically derived permutation table

Library Block sublibrary of Interleaving

Description The Algebraic Interleaver block rearranges the elements of its input vector
using a permutation that is algebraically derived. The Number of elements
parameter, N, indicates how many numbers are in the input vector.If the input
is frame-based, then it must be a column vector.

The Type parameter indicates the algebraic method that the block uses to
generate the appropriate permutation table. Choices are Takeshita-Costello
and Welch-Costas. Each of these methods has parameters and restrictions
that are specific to it:

• If Type is set to Welch-Costas, then N+1 must be prime. The Primitive
element parameter is an integer, A, between 1 and N that represents a
primitive element of the finite field GF(N+1). This means that every nonzero
element of GF(N+1) can be expressed as A raised to some integer power.

In a Welch-Costas interleaver, the permutation maps the integer k to
mod(Ak,N+1) - 1.

• If Type is set to Takeshita-Costello, then N must be 2m for some integer m.
The Multiplicative factor parameter, h, must be an odd integer less than N.
The Cyclic shift parameter, k, must be a nonnegative integer less than N.

A Takeshita-Costello interleaver uses a length-N cycle vector whose nth
element is

mod(k*(n-1)*n/2, N)

for integers n between 1 and N. The block creates a permutation vector by
listing, for each element of the cycle vector in ascending order, one plus the
element’s successor. The interleaver’s actual permutation table is the result
of shifting the elements of the permutation vector left by the Cyclic shift
parameter. (The block performs all computations on numbers and indices
modulo N.)

Algebraic Interleaver

2-52

Dialog Box

Type
The type of permutation table that the block uses for interleaving.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the interleaver’s cycle vector. This field appears
only if Type is set to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the
permutation table. This field appears only if Type is set to
Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only
if Type is set to Welch-Costas.

Pair Block Algebraic Deinterleaver

Algebraic Interleaver

2-53

See Also General Block Interleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer
Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. “New Classes Of Algebraic
Interleavers for Turbo-Codes.” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, Aug. 16-21, 1998. 419.

APP Decoder

2-54

2APP DecoderPurpose Decode a convolutional code using the a posteriori probability (APP) method

Library Convolutional sublibrary of Channel Coding

Description The APP Decoder block performs a posteriori probability (APP) decoding of a
convolutional code. You can use this block to build a turbo decoder.

Inputs and Outputs
The input L(u) represents the sequence of log-likelihoods of encoder input bits,
while the input L(c) represents the sequence of log-likelihoods of code bits. The
outputs L(u) and L(c) are updated versions of these sequences, based on
information about the encoder.

If the convolutional code uses an alphabet of 2n possible symbols, then this
block’s L(c) vectors have length Q*n for some positive integer Q. Similarly, if
the decoded data uses an alphabet of 2k possible output symbols, then this
block’s L(u) vectors have length Q*k. The integer Q is the number of frames
that the block processes in each step.

The inputs can be either:

• Sample-based vectors having the same dimension and orientation, with
Q = 1

• Frame-based column vectors with any positive integer for Q

If you only need the input L(c) and output L(u), then you can attach a Simulink
Ground block to the input L(u) and a Simulink Terminator block to the output
L(c).

Specifying the Encoder
To define the convolutional encoder that produced the coded input, use the
Trellis structure parameter. This parameter is a MATLAB structure whose
format is described in the section, “Trellis Description of a Convolutional
Encoder,” in the Communications Toolbox User’s Guide. You can use this
parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis
structure, then enter its name as the Trellis structure parameter. This way
is preferable because it causes Simulink to spend less time updating the

APP Decoder

2-55

diagram at the beginning of each simulation, compared to the usage in the
next bulleted item.

• If you want to specify the encoder using its constraint length, generator
polynomials, and possibly feedback connection polynomials, then use a
poly2trellis command within the Trellis structure field. For example, to
use an encoder with a constraint length of 7, code generator polynomials of
171 and 133 (in octal numbers), and a feedback connection of 171 (in octal),
set the Trellis structure parameter to
poly2trellis(7,[171 133],171)

To indicate how the encoder treats the trellis at the beginning and end of each
frame, set the Termination method parameter to either Truncated or
Terminated. The Truncated option indicates that the encoder resets to the
all-zeros state at the beginning of each frame, while the Terminated option
indicates that the encoder forces the trellis to end each frame in the all-zeros
state. If you use the Convolutional Encoder block with the Reset parameter set
to On each frame, then use the Truncated option in this block.

Specifying Details of the Algorithm
You can control part of the decoding algorithm using the Algorithm
parameter. The True APP option implements a posteriori probability. To gain
speed, both the Max* and Max options approximate expressions like

by other quantities. The Max option uses max{ai} as the approximation, while
the Max* option uses max{ai} plus a correction term.

The Max* option enables the Scaling bits parameter in the mask. This
parameter is the number of bits by which the block scales the data it processes
internally. You can use this parameter to avoid losing precision during the
computations. It is especially appropriate if your implementation uses
fixed-point components. For more information about the Max* option, see the
article by Viterbi in the “References” section below.

aiexp
i
∑log

APP Decoder

2-56

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Termination method
Either Truncated or Terminated. This parameter indicates how the
convolutional encoder treats the trellis at the beginning and end of frames.

Algorithm
Either True APP, Max*, or Max.

Number of scaling bits
An integer between 0 and 8 that indicates by how many bits the decoder
scales data in order to avoid losing precision. This field is active only when
Algorithm is set to Max*.

See Also Viterbi Decoder, Convolutional Encoder; poly2trellis (Communications
Toolbox)

References [1] Benedetto, Sergio and Guido Montorsi. “Performance of Continuous and
Blockwise Decoded Turbo Codes.” IEEE Communications Letters, vol. 1, May
1997. 77-79.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “A Soft-Input
Soft-Output Maximum A Posterior (MAP) Module to Decode Parallel and

APP Decoder

2-57

Serial Concatenated Codes.” JPL TMO Progress Report, vol. 42-127, November
1996. [This electronic journal is available at
http://tmo.jpl.nasa.gov/tmo/progress_report/index.html.]

[3] Viterbi, Andrew J. “An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes.” IEEE Journal
on Selected Areas in Communications, vol. 16, February 1998. 260-264.

AWGN Channel

2-58

2AWGN ChannelPurpose Add white Gaussian noise to the input signal

Library Channels

Description The AWGN Channel block adds white Gaussian noise to a real or complex
input signal. When the input signal is real, this block adds real Gaussian noise
and produces a real output signal. When the input signal is complex, this block
adds complex Gaussian noise and produces a complex output signal. This block
inherits its sample time from the input signal.

This block uses the DSP Blockset’s Random Source block to generate the noise.
The Initial seed parameter in this block initializes the noise generator. Initial
seed can be either a scalar or a vector whose length matches the number of
channels in the input signal. For details on Initial seed, see the Random
Source block reference page in the DSP Blockset User’s Guide.

Frame-Based Processing and Input Dimensions
This block can process multichannel signals that are frame-based or
sample-based. The guidelines below indicate how the block interprets your
data, depending on the data’s shape and frame status:

• If your input is a sample-based scalar, then the block adds scalar Gaussian
noise to your signal.

• If your input is a sample-based vector or a frame-based row vector, then the
block adds independent Gaussian noise to each channel.

• If your input is a frame-based column vector, then the block adds a frame of
Gaussian noise to your single-channel signal.

• If your input is a frame-based m-by-n matrix, then the block adds a length-m
frame of Gaussian noise independently to each of the n channels.

The input cannot be a sample-based m-by-n matrix if both m and n are greater
than 1.

Specifying the Variance Directly or Indirectly
You can specify the variance of the noise generated by the AWGN Channel
block using one of four modes:

• Signal to noise ratio (Es/No), where the block calculates the variance from
these quantities that you specify in the block mask:

AWGN Channel

2-59

- Es/No, the ratio of signal energy to noise power spectral density

- Input signal power, the power of the input symbols
- Symbol period

• Signal to noise ratio (SNR), where the block calculates the variance from
these quantities that you specify in the block mask:

- SNR, the ratio of signal power to noise power

- Input signal power, the power of the input samples

• Variance from mask, where you specify the variance in the block mask. The
value must be positive.

• Variance from port, where you provide the variance as an input to the
block. The variance input must be positive, and its sampling rate must equal
that of the input signal. If the first input signal is sample-based, then the
variance input must be sample-based. If the first input signal is frame-based,
then the variance input can be either frame-based with exactly one row, or
sample-based.

In both Variance from mask mode and Variance from port mode, these rules
describe how the block interprets the variance:

• If the variance is a scalar, then all signal channels are uncorrelated but
share the same variance.

• If the variance is a vector whose length is the number of channels in the
input signal, then each element represents the variance of the corresponding
signal channel.

Note If you apply complex input signals to the AWGN Channel block, then it
adds complex zero-mean Gaussian noise with the calculated or specified
variance. The variance of each of the quadrature components of the complex
noise is half of the calculated or specified value.

Relationship Between Es/No and SNR Modes
For complex input signals, the AWGN Channel block relates Es/N0 and SNR
according to the following equation:

Es N0⁄ SNR Tsym Tsamp⁄()⋅=

AWGN Channel

2-60

where

• Es = Signal energy (Joules)

• N0 = Noise power spectral density (Watts/Hz)

• Tsym is the Symbol period of the block in Es/No mode (s)

• Tsamp is the inherited Sample time of the block (s)

You can derive this relationship as follows:

where

• S = Input signal power (watts)

• N = Noise power (Watts)

• Bn = Noise bandwidth (Hz)

• Fs = Sampling frequency (Hz)

Note that . The quantity Es/N0 is the signal-to-noise ratio
with the noise measured in a symbol rate bandwidth. The quantity S/N is
measured in a sample rate bandwidth.

For real signal inputs, the AWGN Channel block relates Es/N0 and SNR
according to the following equation:

Note that the equation for the real case differs from the corresponding equation
for the complex case by a factor of 2. This is so because the block uses a noise
power spectral density of N0/2 Watts/Hz for real input signals, versus N0
Watts/Hz for complex signals.

The following figures illustrate the difference between the real and complex
cases by showing the noise power spectral densities Sn(f) of a real bandpass
white noise process and its complex lowpass equivalent.

Es N0⁄ S Tsym⋅() N Bn⁄()⁄=

S N⁄() Tsym Fs⋅()⋅=

SNR Tsym Tsamp⁄()⋅=

Bn Fs 1 Tsamp⁄= =

Es N0⁄ 2 SNR Tsym Tsamp⁄()⋅ ⋅=

AWGN Channel

2-61

AWGN Channel

2-62

Dialog Box

Initial seed
The seed for the Gaussian noise generator.

Mode
The mode by which you specify the noise variance: Signal to noise
ratio (Es/No), Signal to noise ratio (SNR), Variance from mask, or
Variance from port.

Es/No (dB)
The ratio of signal energy per symbol to noise power spectral density, in
decibels. This field appears only if Mode is set to Es/No.

SNR (dB)
The ratio of signal power to noise power, in decibels. This field appears only
if Mode is set to SNR.

Input signal power (watts)
The root mean square power of the input symbols (if Mode is Es/No) or
input samples (if Mode is SNR), in watts. This field appears only if Mode
is set to either Es/No or SNR.

AWGN Channel

2-63

Symbol period (s)
The duration of a channel symbol, in seconds. This field appears only if
Mode is set to Es/No.

Variance
The variance of the white Gaussian noise. This field appears only if Mode
is set to Variance from mask.

See Also Random Source (DSP Blockset)

Reference [1] Proakis, John G., Digital Communications, 4th Ed., McGraw-Hill, 2001.

Barker Code Generator

2-64

2Barker Code GeneratorPurpose Generate a Barker Code

Library Sequence Generators sublibrary of Comm Sources

Description Barker codes, which are subsets of PN sequences, are commonly used for frame
synchronization in digital communication systems. Barker codes have length
at most 13 and have low correlation sidelobes. A correlation sidelobe is the
correlation of a codeword with a time-shifted version of itself. The correlation
sidelobe, Ck, for a k-symbol shift of an N-bit code sequence, {Xj}, is given by

where Xj is an individual code symbol taking values +1 or -1, for , and
the adjacent symbols are assumed to be zero.

The Barker Code Generator block provides the codes listed in the following
table:

Code length Barker Code

1 [-1]

2 [-1 1];

3 [-1 -1 1]

4 [-1 -1 1 -1]

5 [-1 -1 -1 1 -1]

7 [-1 -1 -1 1 1 -1 1]

11 [-1 -1 -1 1 1 1 -1 1 1 -1 1]

13 [-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1]

Ck XjXj k+

j 1=

N k–

∑=

1 i N≤ ≤

Barker Code Generator

2-65

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Code length
The length of the Barker code.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

See Also PN Sequence Generator

Baseband PLL

2-66

2Baseband PLL Purpose Implement a baseband phase-locked loop

Library Synchronization

Description The Baseband PLL (phase-locked loop) block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match the
phase of an input signal. Unlike the Phase-Locked Loop block, this block uses
a baseband method and does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass filter
numerator and Lowpass filter denominator mask parameters. Each is a
vector that gives the respective polynomial’s coefficients in order of
descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2
in the Signal Processing Toolbox. The default filter is a Chebyshev type II
filter whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO
signal to its input using the VCO input sensitivity parameter. This
parameter, measured in Hertz per volt, is a scale factor that determines how
much the VCO shifts from its quiescent frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO

This model is nonlinear; for a linearized version, use the Linearized Baseband
PLL block.

Baseband PLL

2-67

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from
the VCO’s quiescent frequency.

See Also Linearized Baseband PLL, Phase-Locked Loop

References For more information about phase-locked loops, see the works listed in
“Selected Bibliography for Synchronization” in Using the Communications
Blockset.

BCH Decoder

2-68

2BCH DecoderPurpose Decode a BCH code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The BCH Decoder block recovers a binary message vector from a binary BCH
codeword vector. For proper decoding, the first two parameter values in this
block should match the parameters in the corresponding BCH Encoder block.

The input is the binary codeword vector and the first output is the
corresponding binary message vector. If the BCH code has message length K
and codeword length N, then the input has length N and the first output has
length K. If the input is frame-based, then it must be a column vector.

The number N must have the form 2M-1, where M is an integer greater than or
equal to 3. For a given codeword length N, only specific message lengths K are
valid for a BCH code. To see which values of K are valid, use the bchpoly
function in the Communications Toolbox. No known analytic formula describes
the relationship among the codeword length, message length, and
error-correction capability.

The second output is the number of errors detected during decoding of the
codeword. A negative integer indicates that the block detected more errors
than it could correct using the coding scheme.

The sample times of all input and output signals are equal.

The Error-correction capability T parameter either:

• Indicates the error-correction capability of the code as a positive integer, or

• Tells the block to compute the error-correction capability, if you enter zero

The block runs faster in the first case above. You can use the bchpoly function
in the Communications Toolbox to calculate the error-correction capability.

BCH Decoder

2-69

Dialog Box

Codeword length N
The codeword length, which is also the vector length of the first input.

Message length K
The message length, which is also the vector length of the first output.

Error-correction capability T
Either the error-correction capability of the code, or zero. A zero forces the
block to calculate the error-control capability when initializing.

Pair Block BCH Encoder

See Also bchpoly (Communications Toolbox)

BCH Encoder

2-70

2BCH EncoderPurpose Create a BCH code from binary vector data

Library Block sublibrary of Channel Coding

Description The BCH Encoder block creates a BCH code with message length K and
codeword length N. You specify both N and K directly in the block mask.

The input must contain exactly K elements. If it is frame-based, then it must
be a column vector. The output is a vector of length N.

N must have the form 2M-1, where M is an integer greater than or equal to 3.
For a given codeword length N, only specific message lengths K are valid for a
BCH code. To see which values of K are valid, use the bchpoly function in the
Communications Toolbox. For example, in the output below, the second column
lists all possible message lengths that correspond to a codeword length of 15.
The third column lists the corresponding error-correction capabilities.

params = bchpoly(15)

params =

 15 11 1
 15 7 2
 15 5 3

No known analytic formula describes the relationship among the codeword
length, message length, and error-correction capability.

Dialog Box

BCH Encoder

2-71

Codeword length N
The codeword length, which is also the output vector length.

Message length K
The message length, which is also the input vector length.

Pair Block BCH Decoder

See Also bchpoly (Communications Toolbox)

Bernoulli Binary Generator

2-72

2Bernoulli Binary Generator Purpose Generate Bernoulli-distributed random binary numbers

Library Data Sources sublibrary of Comm Sources

Description The Bernoulli Binary Generator block generates random binary numbers using
a Bernoulli distribution. The Bernoulli distribution with parameter p produces
zero with probability p and one with probability 1-p. The Bernoulli distribution
has mean value 1-p and variance p(1-p). The Probability of a zero parameter
specifies p, and can be any real number between zero and one.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed and Probability of a zero
parameters becomes the number of columns in a frame-based output or the
number of elements in a sample-based vector output. Also, the shape (row or
column) of the Initial seed and Probability of a zero parameters becomes the
shape of a sample-based two-dimensional output signal.

Dialog Box

Bernoulli Binary Generator

2-73

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Probability of a zero

The probability with which a zero output occurs.

Initial seed
The initial seed value for the random number generator. The seed can be
either a vector of the same length as the Probability of a zero parameter,
or a scalar.

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Binary Error Pattern Generator, Random Integer Generator, Binary
Symmetric Channel; randint (Communications Toolbox), rand (built-in
MATLAB function)

Binary Cyclic Decoder

2-74

2Binary Cyclic DecoderPurpose Decode a systematic cyclic code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Cyclic Decoder block recovers a message vector from a codeword
vector of a binary systematic cyclic code. For proper decoding, the parameter
values in this block should match those in the corresponding Binary Cyclic
Encoder block.

If the cyclic code has message length K and codeword length N, then N must
have the form 2M-1 for some integer M greater than or equal to 3.

The input must contain exactly N elements. If it is frame-based, then it must
be a column vector. The output is a vector of length K.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second mask
parameters, respectively. The block computes an appropriate generator
polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K)
binary generator polynomial, enter N as the first parameter and a binary
vector as the second parameter. The vector represents the generator
polynomial by listing its coefficients in order of ascending exponents. You can
create cyclic generator polynomials using the cyclpoly function in the
Communications Toolbox.

Dialog Box

Binary Cyclic Decoder

2-75

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or generator polynomial
Either the message length, which is also the output vector length; or a
binary vector that represents the generator polynomial for the code.

Pair Block Binary Cyclic Encoder

See Also cyclpoly (Communications Toolbox)

Binary Cyclic Encoder

2-76

2Binary Cyclic EncoderPurpose Create a systematic cyclic code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Cyclic Encoder block creates a systematic cyclic code with message
length K and codeword length N. The number N must have the form 2M-1,
where M is an integer greater than or equal to 3.

The input must contain exactly K elements. If it is frame-based, then it must
be a column vector. The output is a vector of length N.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second mask
parameters, respectively. The block computes an appropriate generator
polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K)
binary generator polynomial, enter N as the first parameter and a binary
vector as the second parameter. The vector represents the generator
polynomial by listing its coefficients in order of ascending exponents. You can
create cyclic generator polynomials using the cyclpoly function in the
Communications Toolbox.

Dialog Box

Codeword length N
The codeword length, which is also the output vector length.

Binary Cyclic Encoder

2-77

Message length K, or generator polynomial
Either the message length, which is also the input vector length; or a
binary vector that represents the generator polynomial for the code.

Pair Block Binary Cyclic Decoder

See Also cyclpoly (Communications Toolbox)

Binary Error Pattern Generator

2-78

2Binary Error Pattern Generator Purpose Generate a binary vector while controlling the number of 1s

Library Data Sources sublibrary Comm Sources

Description The Binary Error Pattern Generator block outputs a random binary vector
whose length is the Binary vector length parameter. The Probabilities
parameter helps determine how many 1s appear in each output vector. Once
the number of 1s is determined, their placement is determined according to a
uniform distribution.

If p1, p2,...pm are the entries in the Probabilities parameter, then p1 is the
probability that the output vector will have a single 1, p2 is the probability that
the output vector will have exactly two 1s, and so on. Note that Probabilities
must have sum less than or equal to one, and length less than or equal to the
Binary vector length. Also, the probability of a zero vector is one minus the
sum of Probabilities.

This block is useful in testing error-control coding algorithms.

Initial Seed
The scalar Initial seed parameter initializes the random number generator
that the block uses to generate randiom errors. For best results, the Initial
seed should be a prime number greater than 30. Also, if there are other blocks
in a model that have an Initial seed parameter, you should choose different
initial seeds for all such blocks.

You can choose seeds for the Rician block using the Communications Blockset’s
randseed function. At the MATLAB prompt, type the command

randseed

This returns a random prime number greater than 30. Typing randseed again
produces a different prime number. If you add an integer argument, randseed
always returns the same prime for that integer. For example, randseed(5)
always returns the same answer.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret

Binary Error Pattern Generator

2-79

vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The Binary vector length parameter becomes the number of columns in a
frame-based output or the number of elements in a sample-based vector
output. Also, the shape (row or column) of the Probabilities parameter
becomes the shape of a sample-based two-dimensional output signal.

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Error pattern length

The output vector length.

Probabilities
A vector whose kth entry indicates the probability that the output vector
has exactly k 1s.

Initial seed
The initial seed value for the random number generator. This must be a

Binary Error Pattern Generator

2-80

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Bernoulli Binary Generator; randerr (Communications Toolbox)

Binary-Input RS Encoder

2-81

2Binary-Input RS EncoderPurpose Create a Reed-Solomon code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary-Input RS Encoder block creates a Reed-Solomon code with message
length K and codeword length N. You specify both N and K directly in the block
mask. The symbols for the code are binary sequences of length M,
corresponding to elements of the Galois field GF(2M), where the first bit in each
sequence is the most significant bit. Restrictions on M and N are given in the
section “Restrictions on the M and the Codeword Length N” below. The
difference N-K must be an even integer.

The input and output are binary-valued signals that represent messages and
codewords, respectively. The input must be a frame-based column vector whose
length is an integer multiple of M*K. The output is a frame-based column
vector whose length is the same integer multiple of M*N. For more information
on representing data for Reed-Solomon codes, see the section “Integer Format
(Reed-Solomon only).”

The default value of M is the smallest integer that is greater than or equal to
log2(N+1), that is, ceil(log2(N+1)). You can change the value of M from the
default by specifying the primitive polynomial for GF(2M), as described in the
section “Specifying the Primitive Polynomial” following. If N is less than 2M-1,
the block uses a shortened Reed-Solomon code.

Each M*K input bits represent K integers between 0 and 2M-1. Similarly, each
M*N output bits represent N integers between 0 and 2M-1. These integers in
turn represent elements of the Galois field GF(2M).

An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword.

Specifying the Primitive Polynomial
You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first
select the box next to Specify primitive polynomial. Then, in the Primitive
polynomial field, enter a binary row vector that represents a primitive
polynomial over GF(2) of degree M, in descending order of powers. For example,
to specify the polynomial , enter the vector [1 0 1 1].x3 x 1+ +

Binary-Input RS Encoder

2-82

If you do not select the box next to Specify primitive polynomial, the block
uses the default primitive polynomial of degree M = ceil(log2(N+1)). You can
display the default polynomial by entering primpoly(ceil(log2(N+1))) at the
MATLAB prompt.

Restrictions on the M and the Codeword Length N
The restrictions on the degree M of the primitive polynomial and the codeword
length N are as follows:

• If you do not select the box next to Specify primitive polynomial, N must
lie in the range .

• If you do select the box next to Specify primitive polynomial, N must lie in
the range and M must lie in the range .

Specifying the Generator Polynomial
You can specify the generator polynomial for the Reed-Solomon code. To do so,
first select the box next to Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose entries are
between 0 and 2M-1. The vector represents a polynomial, in descending order
of powers, whose coefficients are elements of GF(2M) represented in integer
format. See the section “Integer Format (Reed-Solomon only)” for more
information about integer format. The generator polynomial must be equal to
a polynomial with a factored form

where is the primitive element of the Galois field over which the input
message is defined, and b is a non-negative integer.

If you do not select the box next to Specify generator polynomial, the block
uses the default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by typing
rsgenpoly(N1,K1), where N1=2M-1 and K1=K+(N1-N), at the MATLAB prompt,
if you are using the default primitive polynomial. If the Specify primitive
polynomial box is selected, and you specify the primitive polynomial specified
as poly, the default generator polynomial is rsgenpoly(N1,K1,poly).

Examples Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a binary vector of
length 15 that represents 5 three-bit integers. A corresponding codeword is a

3 N 216 1–< <

3 N≤ 2M 1–< 3 M 16≤ ≤

g x() x αb+() x αb 1++() x αb 2++()… x αb N K– 1–++()=

α

Binary-Input RS Encoder

2-83

binary vector of length 21 that represents 7 three-bit integers. The following
figure shows the codeword that would result from a particular message word.
The integer format equivalents illustrate that the highest order bit is at the
left.

Dialog Box

Codeword length N
The codeword length. The output has vector length M*N.

Message input:

Code output:

[0 1 1 1 1 1 0 0 1 0 0 0 0 0 1]

[0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1]

Binary-Input RS Encoder
with N = 7, K = 5

[3 7 1 0 1]

[3 7 1 0 1 3 3]

in integer format

in integer format

Binary-Input RS Encoder

2-84

Message length K
The message length. The input has vector length M*K.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial as a
binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending
order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial as an
integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of powers.

Pair Block Binary-Output RS Decoder

See Also Integer-Input RS Encoder

Binary Linear Decoder

2-85

2Binary Linear DecoderPurpose Decode a linear block code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Linear Decoder block recovers a binary message vector from a
binary codeword vector of a linear block code.

The Generator matrix parameter is the generator matrix for the block code.
For proper decoding, this should match the Generator matrix parameter in
the corresponding Binary Linear Encoder block. If N is the codeword length of
the code, then Generator matrix must have N columns. If K is the message
length of the code, then the Generator matrix parameter must have K rows.

The input must contain exactly N elements. If it is frame-based, then it must
be a column vector. The output is a vector of length K.

The decoder tries to correct errors, using the Decoding table parameter. If
Decoding table is the scalar 0, then the block defaults to the table produced by
the Communications Toolbox function syndtable. Otherwise, Decoding table
must be a 2N-K-by-N binary matrix. The rth row of this matrix is the correction
vector for a received binary codeword whose syndrome has decimal integer
value r-1. The syndrome of a received codeword is its product with the
transpose of the parity-check matrix.

Dialog Box

Binary Linear Decoder

2-86

Generator matrix
Generator matrix for the code; same as in Binary Linear Encoder block.

Decoding table
Either a 2N-K-by-N matrix that lists correction vectors for each codeword’s
syndrome; or the scalar 0, in which case the block defaults to the table
corresponding to the Generator matrix parameter.

Pair Block Binary Linear Encoder

Binary Linear Encoder

2-87

2Binary Linear Encoder Purpose Create a linear block code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Linear Encoder block creates a binary linear block code using a
generator matrix that you provide in the parameter mask. If K is the message
length of the code, then the Generator matrix parameter must have K rows.
If N is the codeword length of the code, then Generator matrix must have N
columns.

The input must contain exactly K elements. If it is frame-based, then it must
be a column vector. The output is a vector of length N.

Dialog Box

Generator matrix
A K-by-N matrix, where K is the message length and N is the codeword
length.

Pair Block Binary Linear Decoder

Binary-Output RS Decoder

2-88

2Binary-Output RS DecoderPurpose Decode a Reed-Solomon code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary-Output RS Decoder block recovers a binary message vector from a
binary Reed-Solomon codeword vector. For proper decoding, the parameter
values in this block should match those in the corresponding Binary-Input RS
Encoder block.

The Reed-Solomon code has message length K and codeword length N. You
specify both N and K directly in the block mask. The symbols for the code are
binary sequences of length M, corresponding to elements of the Galois field
GF(2M), where the first bit in each sequence is the most significant bit.
Restrictions on M and N are described in the section “Restrictions on the M and
the Codeword Length N” on page 2-82. The difference N-K must be an even
integer.

The input and output are binary-valued signals that represent messages and
codewords, respectively. The input must be a frame-based column vector whose
length is an integer multiple of M*K. The output is a frame-based column
vector whose length is the same integer multiple of M*N. For more information
on representing data for Reed-Solomon codes, see the section “Integer Format
(Reed-Solomon only).”

The default value of M is the smallest integer that is greater than or equal to
log2(N+1), that is ceil(log2(N+1)). You can change the value of M from the
default by specifying the primitive polynomial for GF(2M), as described in the
section “Specifying the Primitive Polynomial” below. If N is less than 2M-1, the
block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon code, as
described in the section “Specifying the Generator Polynomial” on page 2-82.

Each M*K input bits represent K integers between 0 and 2M-1. Similarly, each
M*N output bits represent N integers between 0 and 2M-1. These integers in
turn represent elements of the Galois field GF(2M).

The second output is a vector of the number of errors detected during decoding
of the codeword. A -1 indicates that the block detected more errors than it could
correct using the coding scheme. An (N,K) Reed-Solomon code can correct up to
floor((N-K)/2) symbol errors (not bit errors) in each codeword.

Binary-Output RS Decoder

2-89

You can disable the second output by clearing the box next to Output port for
number of corrected errors. This removes the block’s second output port.

Dialog Box

Codeword length N
The codeword length. The input has vector length M*N.

Message length K
The message length. The first output has vector length M*K.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial as a
binary row vector.

Binary-Output RS Decoder

2-90

Primitive polynomial
Binary row vector representing the primitive polynomial in descending
order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial as an
integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of powers.

Output port for number of corrected errors
When you select this box, the block outputs the number of corrected errors
in each word through a second output port.

Pair Block Binary-Input RS Encoder

See Also Integer-Output RS Decoder

Binary Symmetric Channel

2-91

2Binary Symmetric Channel Purpose Introduce binary errors

Library Channels

Description The Binary Symmetric Channel block introduces binary errors to the signal
transmitted through this channel.

The input port is the transmitted binary signal. The input can be either a
scalar, a sample-based vector, or a frame-based row vector. This block
processes each vector element independently, and introduces an error in a
given spot with probability Error probability.

The first output port is the binary signal that has passed through the channel.
The second output port is the vector of errors that were introduced. To suppress
the second output port, uncheck the Output error vector check box.

Dialog Box

Error probability
The probability that a binary error will occur. The value of this parameter
must be between zero and one.

Initial seed
The initial seed value for the random number generator.

Output error vector
If this box is checked, then the block outputs the vector of errors.

See Also Bernoulli Binary Generator

Bipolar to Unipolar Converter

2-92

2Bipolar to Unipolar ConverterPurpose Map a bipolar signal into a unipolar signal in the range [0, M-1]

Library Utility Functions

Description The Bipolar to Unipolar Converter block maps the bipolar input signal to a
unipolar output signal. If the input consists of integers in the set {-M+1, -M+3,
-M+5,..., M-1}, where M is the M-ary number parameter, then the output
consists of integers between 0 and M-1.

The table below shows how the block’s mapping depends on the Polarity
parameter.

Dialog Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive (respectively, Negative) causes the block to maintain
(respectively, reverse) the relative ordering of symbols in the alphabets.

Examples If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and the Polarity
parameter is Positive, then the output is [0; 1; 2; 3]. Changing the Polarity
parameter to Negative changes the output to [3; 2; 1; 0].

Polarity Parameter Value Output Corresponding to Input Value of k

Positive (M-1+k)/2

Negative (M-1-k)/2

Bipolar to Unipolar Converter

2-93

Pair Block Unipolar to Bipolar Converter

Bit to Integer Converter

2-94

2Bit to Integer ConverterPurpose Map a vector of bits to a corresponding vector of integers

Library Utility Functions

Description The Bit to Integer Converter block maps groups of bits in the input vector to
integers in the output vector. If M is the Number of bits per integer
parameter, then the block maps each group of M bits to an integer between 0
and 2M-1. As a result, the output vector length is 1/M times the input vector
length.

If the input is sample-based input, then it must be a vector whose length equals
the Number of bits per integer parameter. If the input is frame-based, then
it must be a column vector whose length is an integer multiple of Number of
bits per integer.

The block interprets the first bit in each group as the most significant bit.

Dialog Box

Number of bits per integer
The number of input bits that the block maps to each integer of the output.
This parameter must be an integer between 1 and 31.

Examples If the input is [0; 1; 1; 1; 1; 1; 0; 1] and the Number of bits per integer
parameter is 4, then the output is [7; 13]. The block maps the first group of four
bits (0, 1, 1, 1) to 7 and the second group of four bits (1, 1, 0, 1) to 13. Notice that
the output length is one-fourth of the output length.

Pair Block Integer to Bit Converter

BPSK Demodulator Baseband

2-95

2BPSK Demodulator BasebandPurpose Demodulate BPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The BPSK Demodulator Baseband block demodulates a signal that was
modulated using the binary phase shift keying method. The input is a
baseband representation of the modulated signal. The input can be either a
scalar or a frame-based column vector.

The input must be a discrete-time complex signal. The block maps the points
exp(jθ) and -exp(jθ) to 0 and 1, respectively, where θ is the Phase offset
parameter.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Samples per symbol
The number of input samples that represent each modulated symbol.

BPSK Demodulator Baseband

2-96

Pair Block BPSK Modulator Baseband

See Also M-PSK Demodulator Baseband, QPSK Demodulator Baseband, DBPSK
Demodulator Baseband

BPSK Modulator Baseband

2-97

2BPSK Modulator BasebandPurpose Modulate using the binary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The BPSK Modulator Baseband block modulates using the binary phase shift
keying method. The output is a baseband representation of the modulated
signal.

The input must be a discrete-time binary-valued signal. If the input bit is 0 or
1, respectively, then the modulated symbol is exp(jθ) or -exp(jθ) respectively,
where θ is the Phase offset parameter.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Samples per symbol
The number of output samples that the block produces for each input bit.

BPSK Modulator Baseband

2-98

Pair Block BPSK Demodulator Baseband

See Also M-PSK Modulator Baseband, QPSK Modulator Baseband, DBPSK Modulator
Baseband

Charge Pump PLL

2-99

2Charge Pump PLL Purpose Implement a charge pump phase-locked loop using a digital phase detector

Library Synchronization

Description The Charge Pump PLL (phase-locked loop) block automatically adjusts the
phase of a locally generated signal to match the phase of an input signal. It is
suitable for use with digital signals.

This PLL has these three components:

• A sequential logic phase detector, also called a digital phase detector or a
phase/frequency detector.

• A filter. You specify the filter’s transfer function using the Lowpass filter
numerator and Lowpass filter denominator mask parameters. Each is a
vector that gives the respective polynomial’s coefficients in order of
descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2
in the Signal Processing Toolbox. The default filter is a Chebyshev type II
filter whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO
using the VCO input sensitivity, VCO quiescent frequency, VCO initial
phase, and VCO output amplitude parameters.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO

A sequential logic phase detector operates on the zero crossings of the signal
waveform. The equilibrium point of the phase difference between the input
signal and the VCO signal equals π. The sequential logic detector can
compensate for any frequency difference that might exist between a VCO and
an incoming signal frequency. Hence, the sequential logic phase detector acts
as a frequency detector.

Charge Pump PLL

2-100

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from
the VCO quiescent frequency value. The units of VCO input sensitivity
are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This
should match the frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

Charge Pump PLL

2-101

VCO output amplitude
The amplitude of the VCO signal.

See Also Phase-Locked Loop

References For more information about digital phase-locked loops, see the works listed in
“Selected Bibliography for Synchronization” in Using the Communications
Blockset.

Complex Phase Difference

2-102

2Complex Phase DifferencePurpose Output the phase difference between the two complex input signals

Library Sequence Operations, in Basic Comm Functions

Description The Complex Phase Difference block accepts two complex input signals that
have the same size and frame status. The output is the phase difference from
the second to the first, measured in radians. The elements of the output are
between -π and π.

The input signals can have any size or frame status. This block processes each
pair of elements independently.

Dialog Box

See Also Complex Phase Shift

Complex Phase Shift

2-103

2Complex Phase ShiftPurpose Shift the phase of the complex input signal by the second input value

Library Sequence Operations, in Basic Comm Functions

Description The Complex Phase Shift block accepts a complex signal at the port labeled In.
The output is the result of shifting this signal’s phase by an amount specified
by the real signal at the input port labeled Ph. The Ph input is measured in
radians, and must have the same size and frame status as the In input.

The input signals can have any size or frame status. This block processes each
pair of corresponding elements independently.

Dialog Box

See Also Complex Phase Difference

Continuous-Time Eye and Scatter Diagrams

2-104

2Continuous-Time Eye and Scatter DiagramsPurpose Produce eye diagram, scatter, or x-y plots, using trigger to set decision timing

Library Comm Sinks

Description The Continuous-Time Eye and Scatter Diagrams block plots eye diagrams,
scatter diagrams, and X-Y diagrams from a continuous-time input signal. The
Diagram type parameter determines which plots the block produces. The
block draws the diagrams in a single window, as in the case of the eye diagram
and scatter diagram below.

The first input is a complex message signal. It must be a sample-based scalar
signal. The eye diagram and the X-Y diagram both record the trajectories of the
message signal in continuous time.

The second input is a scalar trigger signal that determines the decision timing
for the scatter diagram. At each rising edge of the trigger signal, the block plots
a vertical line in the eye diagram and adds a new point to the scatter plot.

The Trace period parameter is the number of seconds represented by the
horizontal axis in the eye diagram. The Trace offset parameter is the time
value at the left edge of the horizontal axis of the eye diagram.

Continuous-Time Eye and Scatter Diagrams

2-105

Tip This block works better if the model’s simulation step size is suitable for
your data. From the model window’s Simulation menu, choose Simulation
parameters and then choose a value for the Max step size parameter. Try
multiplying this block’s Trace period parameter by 1/8 or 1/16.

To specify the plotting color as well as the line type and/or marker type, use the
Line type parameters that appear after you select a value for the Diagram
type parameter. In the Line type for eye diagram parameter, use a slash (/)
to separate the specifications for the real and imaginary components of the
input signal. Choices for the color, marker, and line types are in the table
below.

Color Characters Marker-Type Characters Line-Type Characters

y Yellow . Point - Solid

m Magenta o Circle : Dotted

c Cyan x Cross -. Dash-dot

r Red + Plus sign -- Dashed

g Green * Asterisk

b Blue s Square

w White d Diamond

k Black v Triangle (down)

^ Triangle (up)

< Triangle (left)

> Triangle (right)

p Five-pointed star

h Six-pointed star

Continuous-Time Eye and Scatter Diagrams

2-106

Dialog Box

Trace period
The duration of the horizontal axis of the eye diagram, in seconds.

Trace offset
The time at the leftmost edge of the horizontal axis of the eye diagram.

Lower and upper bounds of diagram
A two-element vector containing the minimum and maximum signal
values in the diagrams.

Number of saved traces
The number of curves in the eye diagram, or points in the scatter plot, that
are visible after you resize or restore the figure window.

Diagram type
The diagram(s) that the block produces.

Line type for eye diagram
A string that specifies the color and the line type for the eye diagram. This
field appears only when the Diagram type parameter is set to an option
that includes an eye diagram.

Continuous-Time Eye and Scatter Diagrams

2-107

Line type for scatter diagram
A string that specifies the color and the marker type for the scatter
diagram. This field appears only when the Diagram type parameter is set
to an option that includes an scatter diagram.

Line type for X-Y diagram
A string that specifies the color and the line type for the X-Y diagram. This
field appears only when the Diagram type parameter is set to an option
that includes an X-Y diagram.

See Also Discrete-Time Eye Diagram Scope, Discrete-Time Scatter Plot Scope,
Discrete-Time Signal Trajectory Scope

Convolutional Deinterleaver

2-108

2Convolutional DeinterleaverPurpose Restore ordering of symbols that were permuted using shift registers

Library Convolutional sublibrary of Interleaving

Description The Convolutional Deinterleaver block recovers a signal that was interleaved
using the Convolutional Interleaver block. The parameters in the two blocks
should have the same values.

The input can be either a scalar or a frame-based column vector. It can be real
or complex. The sample times of the input and output signals are the same.

Dialog Box

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The difference in symbol capacity of each successive shift register, where
the last register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block Convolutional Interleaver

See Also General Multiplexed Deinterleaver, Helical Deinterleaver

Convolutional Deinterleaver

2-109

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. “Burst-Correcting Codes for the Classic Bursty Channel.”
IEEE Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. “Realization of Optimum Interleavers.” IEEE Transactions on
Information Theory, IT-16 (3), May 1970. 338-345.

Convolutional Encoder

2-110

2Convolutional EncoderPurpose Create a convolutional code from binary data

Library Convolutional sublibrary of Channel Coding

Description The Convolutional Encoder block encodes a sequence of binary input vectors to
produce a sequence of binary output vectors. This block can process multiple
symbols at a time.

Input and Output Sizes
If the encoder takes k input bit streams (that is, can receive 2k possible input
symbols), then this block’s input vector length is L*k for some positive integer
L. Similarly, if the encoder produces n output bit streams (that is, can produce
2n possible output symbols), then this block’s output vector length is L*n.

The input can be a sample-based vector with L = 1, or a frame-based column
vector with any positive integer for L.

Specifying the Encoder
To define the convolutional encoder, use the Trellis structure parameter. This
parameter is a MATLAB structure whose format is described in the section,
“Trellis Description of a Convolutional Encoder,” in the Communications
Toolbox User’s Guide. You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis
structure, then enter its name as the Trellis structure parameter. This way
is preferable because it causes Simulink to spend less time updating the
diagram at the beginning of each simulation, compared to the usage in the
next bulleted item.

• If you want to specify the encoder using its constraint length, generator
polynomials, and possibly feedback connection polynomials, then use a
poly2trellis command within the Trellis structure field. For example, to
use an encoder with a constraint length of 7, code generator polynomials of
171 and 133 (in octal numbers), and a feedback connection of 171 (in octal),
set the Trellis structure parameter to
poly2trellis(7,[171 133],171)

The encoder registers begin in the all-zeros state. You can configure the
encoder so that it resets its registers to the all-zeros state during the course of
the simulation. To do this, use one of these values of the Reset parameter:

Convolutional Encoder

2-111

• The value None indicates that the encoder never resets.

• The value On each frame indicates that the encoder resets at the beginning
of each frame, before processing the next frame of input data

• The value On nonzero Rst input causes the block to have a second input
port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Reset
Determines whether and under what circumstances the encoder resets to
the all-zeros state before processing the input data. Choices are None, On
each frame, and On nonzero Rst input. The last option causes the block
to have a second input port, labeled Rst.

See Also Viterbi Decoder, APP Decoder

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data
Communications Principles. New York: Plenum, 1992.

Convolutional Interleaver

2-112

2Convolutional InterleaverPurpose Permute input symbols using a set of shift registers

Library Convolutional sublibrary of Interleaving

Description The Convolutional Interleaver block permutes the symbols in the input signal.
Internally, it uses a set of shift registers. The delay value of the kth shift
register is (k-1) times the Register length step parameter. The number of shift
registers is the value of the Rows of shift registers parameter.

The Initial conditions parameter indicates the values that fill each shift
register at the beginning of the simulation (except for the first shift register,
which has zero delay). If Initial conditions is a scalar, then its value fills all
shift registers except the first; if Initial conditions is a column vector whose
length is the Rows of shift registers parameter, then each entry fills the
corresponding shift register. The value of the first element of the Initial
conditions parameter is unimportant, since the first shift register has zero
delay.

The input can be either a scalar or a frame-based column vector. It can be real
or complex. The sample times of the input and output signals are the same.

Dialog Box

Rows of shift registers
The number of shift registers that the block uses internally.

Convolutional Interleaver

2-113

Register length step
The number of additional symbols that fit in each successive shift register,
where the first register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block Convolutional Deinterleaver

See Also General Multiplexed Interleaver, Helical Interleaver

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. “Burst-Correcting Codes for the Classic Bursty Channel.”
IEEE Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. “Realization of Optimum Interleavers.” IEEE Transactions on
Information Theory, IT-16 (3), May 1970. 338-345.

CPFSK Demodulator Baseband

2-114

2CPFSK Demodulator BasebandPurpose Demodulate CPFSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPFSK Demodulator Baseband block demodulates a signal that was
modulated using the continuous phase frequency shift keying method. The
input is a baseband representation of the modulated signal. The M-ary
number parameter, M, is the size of the input alphabet. M must have the form
2K for some positive integer K.

The Modulation index parameter times π radians is the phase shift in the
modulated signal due to the latest symbol, when that symbol is the integer 1.
The Phase offset parameter is the initial phase of the modulated waveform.

Traceback Length and Output Delays
Internally, this block creates a trellis description of the modulation scheme and
uses the Viterbi algorithm. The Traceback length parameter, D, in this block
is the number of trellis branches used to construct each traceback path. D
influences the output delay, which is the number of zero symbols that precede
the first meaningful demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1 zero
symbols.

• If the input signal is frame-based, then the delay consists of D zero symbols.

Outputs and Symbol Sets
If the Output type parameter is set to Integer, then the block produces odd
integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces groupings
of K bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps the odd
integer k to the nonnegative integer (k+M-1)/2. Finally, the block maps each
nonnegative integer to a binary word, using a mapping that depends on
whether the Symbol set ordering parameter is set to Binary or Gray. For
more information about Gray and binary coding, see “Binary-Valued and
Integer-Valued Signals” in Using the Communications Blockset.

CPFSK Demodulator Baseband

2-115

The input can be either a scalar or a frame-based column vector.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

CPFSK Demodulator Baseband

2-116

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Modulation index
The number of half-revolutions of phase shift in the modulated signal after
modulating the latest symbol of 1.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block CPFSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder, M-FSK Demodulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPFSK Demodulator Passband

2-117

2CPFSK Demodulator PassbandPurpose Demodulate CPFSK-modulated data

Library CPM, in Digital Passband sublibrary of Modulation

Description The CPFSK Demodulator Passband block demodulates a signal that was
modulated using the continuous phase frequency shift keying method. The
input is a passband representation of the modulated signal. The M-ary
number parameter, M, is the size of the input alphabet. M must have the form
2K for some positive integer K.

This block converts the input to an equivalent baseband representation, using
downconversion and then FIR decimation. The block then uses the baseband
equivalent block, CPFSK Demodulator Baseband, for internal computations.
The following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Output type
• Signal set ordering
• Modulation index
• Traceback length

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

CPFSK Demodulator Passband

2-118

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The CPSK Demodulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

CPFSK Demodulator Passband

2-119

Dialog Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

CPFSK Demodulator Passband

2-120

Modulation index
The number of half-revolutions of phase shift in the modulated signal after
modulating the latest symbol of 1.

Symbol period(s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time (s)
The sample time of the input signal.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block CPFSK Modulator Passband

See Also CPFSK Demodulator Baseband, Viterbi Decoder, M-FSK Demodulator
Passband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPFSK Modulator Baseband

2-121

2CPFSK Modulator BasebandPurpose Modulate using the continuous phase frequency shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPFSK Modulator Baseband block modulates using the continuous phase
frequency shift keying method. The output is a baseband representation of the
modulated signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2K for some positive integer K.

The Modulation index parameter times π radians is the phase shift due to the
latest symbol when that symbol is the integer 1. The Phase offset parameter
is the initial phase of the output waveform, measured in radians.

For the exact definitions of the rectangular pulse shape that this block uses, see
the work by Anderson, Aulin, and Sundberg listed in “References” on page
2-123.

Inputs and Symbol Sets
If the Input type parameter is set to Integer, then the block accepts odd
integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts groupings of
K bits. Each grouping is called a binary word. The input vector length must be
an integer multiple of K.

In binary input mode, the block maps each binary word to an integer between
0 and M-1, using a mapping that depends on whether the Symbol set ordering
parameter is set to Binary or Gray. The block then maps the integer k to the
intermediate value 2k-(M-1) and proceeds as in the integer input mode. For
more information, see “Binary-Valued and Integer-Valued Signals” in Using
the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If Input type
is Bit, then the input can also be a vector of length K.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

CPFSK Modulator Baseband

2-122

Dialog Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest symbol when
that symbol is the integer 1.

CPFSK Modulator Baseband

2-123

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block CPFSK Demodulator Baseband

See Also CPM Modulator Baseband, M-FSK Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPFSK Modulator Passband

2-124

2CPFSK Modulator PassbandPurpose Modulate using the continuous phase frequency shift keying method

Library CPM, in Digital Passband sublibrary of Modulation

Description The CPFSK Modulator Passand block modulates using the continuous phase
frequency shift keying method. The output is a passband representation of the
modulated signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2K for some positive integer K.

This block uses the baseband equivalent block, CPFSK Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation, using FIR interpolation and then upconversion. The
following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Input type
• Symbol set ordering

• Modulation index

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

CPFSK Modulator Passband

2-125

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The CPFSK Modulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

CPFSK Modulator Passband

2-126

Dialog Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest symbol when
that symbol is the integer 1.

CPFSK Modulator Passband

2-127

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time(s)
The sample time of the output signal.

Pair Block CPFSK Demodulator Passband

See Also CPFSK Modulator Baseband, M-FSK Modulator Passband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPM Demodulator Baseband

2-128

2CPM Demodulator BasebandPurpose Demodulate CPM-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPM Demodulator Baseband block demodulates a signal that was
modulated using continuous phase modulation. The input is a baseband
representation of the modulated signal. The M-ary number parameter, M, is
the size of the input alphabet. M must have the form 2K for some positive
integer K.

The input can be either a scalar or a frame-based column vector.

The Modulation index, Frequency pulse shape, Rolloff, BT product, Pulse
length, Symbol prehistory, and Phase offset parameters are as described on
the reference page for the CPM Modulator Baseband block.

Traceback Length and Output Delays
Internally, this block creates a trellis description of the modulation scheme and
uses the Viterbi algorithm. The Traceback length parameter, D, in this block
is the number of trellis branches used to construct each traceback path. D
influences the output delay, which is the number of zero symbols that precede
the first meaningful demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1 zero
symbols.

• If the input signal is frame-based, then the delay consists of D zero symbols.

Outputs and Symbol Sets
If the Output type parameter is set to Integer, then the block produces odd
integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces groupings
of K bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps the odd
integer k to the nonnegative integer (k+M-1)/2. Finally, the block maps each
nonnegative integer to a binary word, using a mapping that depends on
whether the Symbol set ordering parameter is set to Binary or Gray. For

CPM Demodulator Baseband

2-129

more information about Gray and binary coding, see “Binary-Valued and
Integer-Valued Signals” in Using the Communications Blockset.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

CPM Demodulator Baseband

2-130

Dialog Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

CPM Demodulator Baseband

2-131

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Modulation index
The number of half-revolutions of phase shift in the modulated signal after
modulating the latest symbol of 1.

Frequency pulse shape
The type of pulse shaping that the corresponding modulator uses to smooth
the phase transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine
pulse. This field is active only when Frequency pulse shape is set to
Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears only when
Frequency pulse shape is set to Spectral Raised Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block CPM Modulator Baseband

CPM Demodulator Baseband

2-132

See Also CPFSK Demodulator Baseband, GMSK Demodulator Baseband, MSK
Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPM Demodulator Passband

2-133

2CPM Demodulator PassbandPurpose Demodulate CPM-modulated data

Library CPM, in Digital Passband sublibrary of Modulation

Description The CPM Demodulator Passband block demodulates a signal that was
modulated using continuous phase modulation. The input is a passband
representation of the modulated signal. The M-ary number parameter, M, is
the size of the input alphabet. M must have the form 2K for some positive
integer K.

This block converts the input to an equivalent baseband representation using
downconversion and then FIR decimation. The block then uses the baseband
equivalent block, CPM Demodulator Baseband, for internal computations. The
following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Output type
• Symbol set ordering
• Modulation index
• Frequency pulse shape
• Rolloff
• BT product
• Pulse length
• Symbol prehistory
• Traceback length

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per

CPM Demodulator Passband

2-134

symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The CPM Demodulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

CPM Demodulator Passband

2-135

Dialog Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

CPM Demodulator Passband

2-136

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Modulation index
The number of half-revolutions of phase shift in the modulated signal after
modulating the latest symbol of 1.

Frequency pulse shape
The type of pulse shaping that the corresponding modulator uses to smooth
the phase transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine
pulse. This field is active only when Frequency pulse shape is set to
Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears only when
Frequency pulse shape is set to Spectral Raised Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the simulation.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

CPM Demodulator Passband

2-137

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time(s)
The sample time of the input signal.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block CPM Modulator Passband

See Also CPM Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPM Modulator Baseband

2-138

2CPM Modulator BasebandPurpose Modulate using continuous phase modulation

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPM Modulator Baseband block modulates using continuous phase
modulation. The output is a baseband representation of the modulated signal.
The M-ary number parameter, M, is the size of the input alphabet. M must
have the form 2K for some positive integer K.

Continuous phase modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. Using the Frequency pulse shape
parameter, you can choose these types of pulse shapes:

• Rectangular
• Raised Cosine
• Spectral Raised Cosine

This option requires an additional parameter, Rolloff. The Rolloff
parameter, which affects the spectrum of the pulse, is a scalar between zero
and one.

• Gaussian

This option requires an additional parameter, BT product. The BT product
parameter, which represents bandwidth multiplied by time, is a nonnegative
scalar. It is used to reduce the bandwidth at the expense of increased
intersymbol interference.

• Tamed FM (tamed frequency modulation)

For the exact definitions of these pulse shapes, see the work by Anderson,
Aulin, and Sundberg listed in “References” on page 2-142. Each pulse shape
has a correponding pulse duration. The Pulse length parameter measures this
quantity in symbol intervals.

The Modulation index parameter times π radians is the phase shift due to the
latest symbol when that symbol is the integer 1. The Phase offset parameter
is the initial phase of the output waveform, measured in radians.

The Symbol prehistory parameter is a scalar or vector that specifies the data
symbols used before the start of the simulation, in reverse chronological order.
If it is a vector, then its length must be one less than the Pulse length
parameter.

CPM Modulator Baseband

2-139

Inputs and Symbol Sets
If the Input type parameter is set to Integer, then the block accepts odd
integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts groupings of
K bits. Each grouping is called a binary word. The input vector length must be
an integer multiple of K.

In binary input mode, the block maps each binary word to an integer between
0 and M-1, using a mapping that depends on whether the Symbol set ordering
parameter is set to Binary or Gray. The block then maps the integer k to the
intermediate value 2k-(M-1) and proceeds as in the integer input mode. For
more information, see “Binary-Valued and Integer-Valued Signals” in Using
the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If Input type
is Bit, then the input can also be a vector of length K.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

CPM Modulator Baseband

2-140

Dialog Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

CPM Modulator Baseband

2-141

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest symbol when
that symbol is the integer 1.

Frequency pulse shape
The type of pulse shaping that the block uses to smooth the phase
transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine
pulse. This field is active only when Frequency pulse shape is set to
Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears only when
Frequency pulse shape is set to Spectral Raised Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in reverse
chronological order.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block CPM Demodulator Baseband

CPM Modulator Baseband

2-142

See Also CPFSK Modulator Baseband, GMSK Modulator Baseband, MSK Modulator
Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

CPM Modulator Passband

2-143

2CPM Modulator PassbandPurpose Modulate using continuous phase modulation

Library CPM, in Digital Passband sublibrary of Modulation

Description The CPM Modulator Passband block modulates using continuous phase
modulation. The output is a passband representation of the modulated signal.
The M-ary number parameter, M, is the size of the input alphabet. M must
have the form 2K for some positive integer K.

This block uses the baseband equivalent block, CPM Modulator Baseband, for
internal computations and converts the resulting baseband signal to a
passband representation, using FIR interpolation and then upconversion. The
following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Input type
• Symbol set ordering
• Modulation index
• Frequency pulse shape
• Rolloff
• BT product
• Pulse length
• Symbol prehistory

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each

CPM Modulator Passband

2-144

integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The CPM Modulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

CPM Modulator Passband

2-145

Dialog Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

CPM Modulator Passband

2-146

Modulation index
The number of half-revolutions of phase shift due to the latest symbol when
that symbol is the integer 1.

Frequency pulse shape
The type of pulse shaping that the block uses to smooth the phase
transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine
pulse. This field is active only when Frequency pulse shape is set to
Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears only when
Frequency pulse shape is set to Spectral Raised Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in reverse
chronological order.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

CPM Modulator Passband

2-147

Output sample time(s)
The sample time of the output signal.

Pair Block CPM Demodulator Passband

See Also CPM Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase
Modulation, New York, Plenum Press, 1986.

CRC-N Generator

2-148

2CRC-N GeneratorPurpose Generate cyclic redundancy check (CRC) bits, according to the selected CRC
method, and append them to input data frames

Library CRC sublibrary of Error Detection and Correction

Description The CRC-N Generator block generates cyclic redundancy code (CRC) bits for
each input data frame and appends them to the end of the frame. The CRC-N
Generator block is a simplified version of the General CRC Generator block.
With the CRC-N Generator block, you can select the generator polynomial for
the CRC algorithm from a list of commonly used polynomials, given in the
CRC-N method field in the block’s mask. The value of N is degree of the
generator polynomial. The table below lists the options for the generator
polynomial.

For a more detailed description of the CRC algorithm, see the section “Cyclic
Redundancy Check Coding.”

You specify the initial state of the internal shift register by the Initial states
parameter in block’s mask. You specify the number of checksums that the block
calculates for each input frame by the Checksums per frame parameter. For
more detailed information, see the reference page for the General CRC
Generator block.

CRC Method Generator Polynomial Number of Bits

CRC-32 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7

+x5+x4+x2+x+1
32

CRC-24 x24+x23+x14+x12+x8+1 24

CRC-16 x16+x15+x2+1 16

Reversed
CRC-16

x16+x14+x+1 16

CRC-8 x8+x7+x6+x4+x2+1 8

CRC-4 x4+x3+x2+x+1 4

CRC-N Generator

2-149

Signal Attributes
The General CRC Generator block has one input port and one output port. Both
ports allow frame based binary column vectors only.

Dialog Box

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the degree of the
generator polynomial, specifying the initial state of the internal shift
register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates
for each input frame.

Pair Block CRC-N Syndrome Detector

See Also General CRC Generator, General CRC Syndrome Detector

CRC-N Syndrome Detector

2-150

2CRC-N Syndrome DetectorPurpose Detect errors in the input data frames according to the selected CRC method

Library CRC Sublibrary of Error Detection and Correction

Description The CRC-N Syndrome Detector block receives a message word and removes the
checksum. The block then calculates a new checksum, and compares the
received checksum with the new checksum. The CRC-N Syndrome Detector
block is a simplified version of the General CRC Syndrome Detector block.
With the CRC-N Syndrome Detector block, you can select the generator
polynomial for the CRC algorithm from a list of commonly used polynomials,
given in the CRC-N method field in the block’s mask. The value of N is degree
of the generator polynomial. The reference page for the CRC-N Generator block
contains a list of the options for the generator polynomial.

The parameter settings for the CRC-N Syndrome Detector block should match
those of the CRC-N Generator block.

You specify the initial state of the internal shift register by the Initial states
parameter in block’s mask. You specify the number of checksums that the block
calculates for each input frame by the Checksums per frame parameter. For
more detailed information, see the reference page for the General CRC
Syndrome Detector block.

Dialog Box

CRC-N Syndrome Detector

2-151

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the degree of the
generator polynomial, specifying the initial state of the internal shift
register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates
for each input frame.

Pair Block CRC-N Generator

See Also General CRC Generator, General CRC Syndrome Detector

Data Mapper

2-152

2Data MapperPurpose Map integer symbols from one coding scheme to another

Library Utility Functions

Description The Data Mapper block accepts integer inputs and produces integer outputs.
You can select one of four mapping modes: Binary to Gray, Gray to Binary,
User Defined, or Straight Through.

The input can be either a scalar, a sample-based vector, or a frame-based
column vector.

Gray coding is an ordering of binary numbers such that all adjacent numbers
differ by only one bit. However, the inputs and outputs of this block are
integers, not binary vectors. As a result, the first two mapping modes perform
code conversions as follows:

• In the Binary to Gray mode, the output from this block is the integer
equivalent of the Gray code bit representation for the input integer.

• In the Gray to Binary mode, the output from this block is the integer
position of the binary equivalent of the input integer in a Gray code ordering.

As an example, the table below shows both the Binary to Gray and Gray to
Binary mappings for integers in the range 0 to 7. In the Binary to Gray Mode
Output column, notice that binary representations in successive rows differ by
exactly one bit. In the Gray to Binary Mode columns, notice that sorting the
rows by Output value creates a Gray code ordering of Input binary
representations.

Binary to Gray Mode Gray to Binary Mode

Input Output Input Output

0 0 (000) 0 (000) 0

1 1 (001) 1 (001) 1

2 3 (011) 2 (010) 3

3 2 (010) 3 (011) 2

4 6 (110) 4 (100) 7

Data Mapper

2-153

When you select the User Defined mode, you can use any arbitrary mapping
by providing a vector to specify the output ordering. For example, the vector
[1,5,0,4,2,3] defines the following mapping:

•

•

•

•

•

•

When you select the Straight Through mode, the output equals the input.

Dialog Box

Mapping mode
The type of data mapping that the block performs.

5 7 (111) 5 (101) 6

6 5 (101) 6 (110) 4

7 4 (100) 7 (111) 5

Binary to Gray Mode Gray to Binary Mode

Input Output Input Output

0 1→
1 5→
2 0→
3 4→
4 2→
5 3→

Data Mapper

2-154

Symbol set size
Symbol set size of M restricts this block’s inputs and outputs to integers in
the range 0 to M-1.

Mapping vector
A vector of length M that contains the integers from 0 to M-1. The order of
the elements of this vector specifies the mapping of inputs to outputs. This
field is active only when Mapping mode is set to User Defined.

DBPSK Demodulator Baseband

2-155

2DBPSK Demodulator BasebandPurpose Demodulate DBPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The DBPSK Demodulator Baseband block demodulates a signal that was
modulated using the differential binary phase shift keying method. The input
is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The block compares the
current symbol to the previous symbol. It maps phase differences of θ and π+θ,
respectively, to outputs of 0 and 1, respectively, where θ is the Phase offset
parameter. The first element of the block’s output is the initial condition of zero
because there is no previous symbol with which to compare the first symbol.

The input can be either a scalar or a frame-based column vector.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

DBPSK Demodulator Baseband

2-156

Phase offset (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block DBPSK Modulator Baseband

See Also M-DPSK Demodulator Baseband, DQPSK Demodulator Baseband, BPSK
Demodulator Baseband

DBPSK Modulator Baseband

2-157

2DBPSK Modulator BasebandPurpose Modulate using the differential binary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The DBPSK Modulator Baseband block modulates using the differential
binary phase shift keying method. The output is a baseband representation of
the modulated signal.

The input must be a discrete-time binary-valued signal. The input can be
either a scalar or a frame-based column vector. These rules govern this
modulation method when the Phase offset parameter is θ:

• If the first input bit is 0 or 1, respectively, then the first modulated symbol
is exp(jθ) or -exp(jθ), respectively.

• If a successive input bit is 0 or 1, respectively, then the modulated symbol is
the previous modulated symbol multiplied by exp(jθ) or -exp(jθ), respectively.

This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

DBPSK Modulator Baseband

2-158

Phase offset (rad)
The phase difference between the previous and current modulated symbols
when the input is zero.

Samples per symbol
The number of output samples that the block produces for each input bit.

Pair Block DBPSK Demodulator Baseband

See Also M-DPSK Modulator Passband, DQPSK Modulator Baseband, BPSK
Modulator Baseband

Deinterlacer

2-159

2DeinterlacerPurpose Distribute elements of input vector alternately between two output vectors

Library Sequence Operations, in Basic Comm Functions

Description The Deinterlacer block accepts an input vector that has an even number of
elements. The block alternately places the elements in each of two output
vectors. As a result, each output vector size is half the input vector size. The
output vectors have the same complexity and sample time of the input.

The input can be either a sample-based vector of length two, or a frame-based
column vector whose length is any even integer.

This block can be useful for separating in-phase and quadrature information
from a single vector into separate vectors.

Dialog Box

Examples If the input vector is frame-based with value [1; 5; 2; 6; 3; 7; 4; 8], then the two
output vectors are [1; 2; 3; 4] and [5; 6; 7; 8]. Notice that this is the inverse of
the example on the reference page for the Interlacer block.

If the input vector is frame-based with value [1; 2; 3; 4; 5; 6], then the two
output vectors are [1; 3; 5] and [2; 4; 6].

Pair Block Interlacer

See Also Demux (Simulink)

Derepeat

2-160

2DerepeatPurpose Reduce sampling rate by averaging consecutive samples

Library Sequence Operations, in Basic Comm Functions

Description The Derepeat block resamples the discrete input at a rate 1/N times the input
sample rate by averaging N consecutive samples. This is one possible inverse
of the Repeat block (DSP Blockset). The positive integer N is the Derepeat
factor parameter in the Derepeat mask.

The Initial condition parameter prescribes elements of the output when it is
still too early for the input data to show up in the output. If the dimensions of
the Initial condition parameter match the output dimensions, then the
parameter represents the initial output value. If Initial condition is a scalar,
then it represents the initial value of each element in the output.

The input can have any shape or frame status.

Sample-Based Operation
If the input is sample-based, then the block assumes that the input is a vector
or matrix whose elements represent samples from independent channels. The
block averages samples from each channel independently over time. The
output period is N times the input period, and the input and output sizes are
identical. The output is delayed by one output period, and the first output value
is the Initial condition value.

Frame-Based Operation
If the input is frame-based, then the block derepeats each frame, treating
distinct channels independently. Each element of the output is the average of
N consecutive elements along a column of the input matrix. The Derepeat
factor must be less than the frame size.

The Framing parameter determines how the block adjusts the rate at the
output to accommodate the reduced number of samples. The two options are:

• Maintain input frame size

The block reduces the sampling rate by using a proportionally longer frame
period at the output port than at the input port. For derepetition by a factor
of N, the output frame period is N times the input frame period, but the input

Derepeat

2-161

and output frame sizes are equal. The output is delayed by one output frame,
and the first output frame is determined only by the Initial condition value.

For example, if a single-channel input with a frame period of 1 second is
derepeated by a factor of 4, then the output has a frame period of 4 seconds.
The input and output frame sizes are equal.

• Maintain input frame rate

The block reduces the sampling rate by using a proportionally smaller frame
size than the input. For derepetition by a factor of N, the output frame size
is 1/N times the input frame size, but the input and output frame rates are
equal. When you use this option, the Initial condition parameter does not
apply and the block incurs no delay, because the input data immediately
shows up in the output.

For example, if a single-channel input with 64 elements is derepeated by a
factor of 4, then the output contains 16 elements. The input and output frame
periods are equal.

Dialog Box

Derepeat factor, N
The number of consecutive input samples to average in order to produce
each output sample.

Initial condition
The value with which to initialize the block.

Derepeat

2-162

Framing
For frame-based operation, the method by which to reduce the amount of
data. One method decreases the frame rate while maintaining frame size,
while the other decreases the frame size while maintaining frame rate.

See Also Repeat (DSP Blockset), Downsample (DSP Blockset)

Descrambler

2-163

2DescramblerPurpose Descramble the input signal

Library Sequence Operations, in Basic Comm Functions

Description The Descrambler block descrambles the scalar input signal. The Descrambler
block is the inverse of the Scrambler block. If you use the Scrambler block in
the transmitter, then you should use the Descrambler block in the receiver.

Below is a schematic of the descrambler. All adders perform addition modulo
N, where N is the Calculation base parameter. The input values must be
integers between 0 and N-1.

At each time step, the input causes the contents of the registers to shift
sequentially. Each switch in the descrambler is on or off as defined by the
Scramble polynomial parameter. To make the Descrambler block reverse the
operation of the Scrambler block, use the same Scramble polynomial
parameters in both blocks. The Initial states can be different in the two blocks,
considering the transmitting and receiving filter delay. See the reference page
for the Scrambler block for more information about these parameters.

1 2 M-1 M

+

Input data

+++

Descrambled data

Descrambler

2-164

Dialog Box

Calculation base
The calculation base N. The input and output of this block are integers in
the range [0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states
The states of the scrambler’s registers when the simulation starts.

Pair Block Scrambler

Differential Decoder

2-165

2Differential DecoderPurpose Decode a binary signal using differential coding technique.

Library Source Coding

Description The Differential Decoder block decodes the binary input signal. The output of
the Differential Decoder block is the decoded binary signal.

The block’s input m and output d are related by

d(t0) = m(t0) + 1 mod 2

d(tk) = m(tk-1) + m(tk) + 1 mod 2

where tk is the kth time step.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. This block processes each vector element independently.

Dialog Box

Symbol interval (s)
The sample time of the input symbol.

Pair Block Differential Encoder

Differential Encoder

2-166

2Differential EncoderPurpose Encode a binary signal using differential coding technique.

Library Source Coding

Description The Differential Encoder block encodes and outputs the binary input signal.

The input m and output d are related by

d(t0) = m(t0) +1 mod 2

d(tk) = d(tk-1) + m(tk) +1 mod 2

where tk is the kth time step.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. This block processes each vector element independently.

Dialog Box

Symbol interval (s)
The sample time of the input symbol.

Pair Block Differential Decoder

Discrete Modulo Integrator

2-167

2Discrete Modulo Integrator Purpose Integrate in discrete time and reduce by a modulus

Library Integrators, in Basic Comm Functions

Description The Discrete Modulo Integrator block integrates its input signal in discrete
time and then uses the Absolute value bound parameter, K, to produce output
strictly between -K and K. The block uses the rem function in MATLAB.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. The block processes each vector element independently.

You can choose one of three integration methods: Forward Euler, Backward
Euler, and Trapezoidal.

Dialog Box

Integration method
The integration method. Choices are Forward Euler, Backward Euler,
and Trapezoidal.

Absolute value bound
The modulus by which the integration result is reduced. This parameter
must be nonzero.

Discrete Modulo Integrator

2-168

Initial condition
The initial condition for integration.

Sample time
The integration sample time.

See Also Modulo Integrator, Windowed Integrator, Integrate and Dump, Discrete-Time
Integrator (Simulink); rem (MATLAB)

Discrete-Time Eye Diagram Scope

2-169

2Discrete-Time Eye Diagram ScopePurpose Display multiple traces of a modulated signal

Library Comm Sinks

Description The Discrete Eye Diagram Scope block displays multiple traces of a modulated
signal to produce an eye diagram. You can use the block to reveal the
modulation characteristics of the signal, such as pulse shaping or channel
distortions.

The Discrete-Time Eye Diagram Scope block has one input port. The input
signal can be either real or complex. The input signal must be a sample-based
scalar in sample-based mode. The input must be a frame-based column vector
or a scalar in frame-based mode.

Example: Viewing the Eye Diagram of a Modulated Signal
The following model creates an eye diagram for a modulated signal. The model
modulates a random signal using the QPSK Modulator block and then filters
the signal with a raised cosine interpolation filter.

To build the model, gather and configure the following blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library, with default parameters

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the
Modulation library of the Communications Blockset, with default
parameters

• AWGN Channel, in the Channels library of the Communications Blockset,
with the following changes to the default parameter settings:

- Set Mode to Signal-to-noise ratio (SNR).

- Set SNR (dB) to 15.

Discrete-Time Eye Diagram Scope

2-170

• FIR Interpolation, in the Multirate Filters sublibrary of the Filtering library
of the DSP Blockset, with the following changes to the default parameter
settings:

- Set FIR Filter Coefficients to rcosine(1, 8,[], 0.5,3).

- Set Interpolation factor to 8.

• Discrete-Time Eye Diagram Scope, in the Comms Sinks library, with the
following changes to the default parameter settings:

- Set Samples per symbol to 8.

Samples per symbol specifies the number of samples in each channel
symbol. Each sample corresponds to a plotted point in the eye diagram.

- Set Symbols per trace to 3.

Symbols per trace specifies the number of symbols that are displayed in
each trace of the eye diagram. A trace is any one of the individual lines in
the eye diagram.

- Set Traces displayed to 3.

Traces displayed specifies the number of traces that are displayed at any
instant.

- Set New traces per display to 1.

New traces per display specifies the number of new traces that appear
each time the diagram is refreshed. The number of traces that remain in
the diagram from one refresh to the next is Traces displayed minus New
traces per display.

- Check Show Rendering Properties and set Markers to + to indicate the
points plotted at each sample. The default value of Markers is empty,
which indicates no marker.

- Check Show Figure Properties and set Eye diagram to display to
In-phase only.

When you run the model for 10 seconds, the Discrete-Time Eye Diagram Scope
displays the following diagram.

Discrete-Time Eye Diagram Scope

2-171

Note that three traces are displayed. Traces 2 and 3 are faded because the
Show Rendering Properties and Color fading check boxes are selected. This
causes traces to be displayed less brightly the older they are. In this picture,
Trace 1 is the most recent and Trace 3 is the oldest. Because New traces per
display is set to 1, only Trace 1 is appearing for the first time. Traces 2 and 3
also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and
because Samples per trace is set to 8, each symbol contains eight samples.
Note that trace 1 contains 24 points, which is the product of Symbols per trace
and Samples per symbol. However, traces 2 and 3 contain 25 points each. The
last point in trace 2, at the right border of the scope, represents the same
sample as the first point in trace 1, at the left border of the scope. Similarly, the
last point in trace 3 represents the same sample as the first point in trace 2.
These duplicate points indicate where the traces would meet if they were
displayed side by side, as illustrated in the following picture.

Trace 1 (newest)

Trace 2

Trace 3 (oldest)

Discrete-Time Eye Diagram Scope

2-172

You can view a more realistic eye diagram by changing the value of Number of
simultaneous traces to 40 and clearing the Line markers field.

Note that when the Offset (samples) parameter is set to 0, the plotting starts
at the center of the first symbol, so that the open part of the eye diagram is in
the middle of the plot for most points.

For another example, see Example: Viewing a Sinusoid.

Marker and Line Styles

The Marker, Line style, and Line color parameters, which are visible when
you check Show Rendering Properties, control the appearance of the signal

Trace 2 meets Trace 3 Trace 1 meets Trace 2

Discrete-Time Eye Diagram Scope

2-173

trajectory. The Marker parameter specifies the marker style for points in the
eye diagram. The following table lists some of the available line markers

The Line style parameter specifies the style for lines in the eye diagram. The
following lists some of the available line styles.

The Line color parameter specifies the color of the eye diagram. These settings
plot the signal channels in the following colors (8-bit RGB equivalents are
shown in the center column).

Marker
Style

Parameter
Symbol

Appearance

Plus +

Circle o

Asterisk *

Point .

Cross x

Line Style Appearance

Solid

Dashed

Dotted

Dash-dot

Color RGB Equivalent Appearance

Black (0,0,0)

Blue (0,0,255)

Red (255,0,0)

+ + +

o o o

Discrete-Time Eye Diagram Scope

2-174

See the line function in the MATLAB documentation for more information
about the available markers, colors, and line styles.

Recommended Settings
The following table summarizes the recommended parameter settings for the
Discrete-Time Eye Diagram Scope.

Green (0,255,0)

Dark purple (192,0,192)

Parameter Recommended Setting

Samples per symbol Same as the Samples per symbol setting in the
modulator block, or the Interpolation factor
setting in the interpolation block

Offset (samples) 0 to view the open part of the eye
(Samples per symbol)/2 to view the closed part
of the eye

Symbols per trace An integer between 1 and 4

Traces displayed 10 times the alphabet size of the modulator, M

New traces per
display

Same as Traces displayed for greater speed
A small positive integer for best animation

Marker None or a point (.) to see where the samples are
plotted

Line style Solid dash (-)

Line color Blue (b)

Color RGB Equivalent Appearance

Discrete-Time Eye Diagram Scope

2-175

Scope Options
The scope title (in the window title bar) is the same as the block title. You can
set the axis scaling by selecting Show Axes properties and setting the y-axis
minimum and y-axis maximum parameters.

Duplicate points at
trace boundary

Check Duplicate points at trace boundary for
modulations such as PSK and QAM.
Clear to display the phase trees for MSK,
CPFSK, GFSK, GMSK, and other continuous
phase modulations.

Color fading Check Color fading for animation that
resembles an oscilloscope.
Clear for greater speed and animation that
resembles a plot.

High quality
rendering

Check High quality rendering for better
animation.
Clear for greater speed.

Eye diagram to
display

Select In-phase and Quadrature to view real
and imaginary components.
Select In-phase Only to view real component
only and for greater speed.
When the input is real and you choose In-phase
and Quadrature, the quadrature component of
the eye diagram is zero.

Open at start of
simulation

Check Open at start of simulation to view the
signal at the start of simulation.
Clear to view the signal after convergence to
steady state and for greater initial speed.

Y-axis minimum Approximately 10% less than the expected
minimum value of the signal

Y-axis maximum Approximately 10% greater than the expected
maximum value of the signal

Parameter Recommended Setting

Discrete-Time Eye Diagram Scope

2-176

In addition to the standard MATLAB figure window menus (File, Edit,
Window, Help), the Vector Scope window has an Axes and a Channels menu.

The properties listed in the Axes menu apply to all channels. Many of the
parameters in this menu are also accessible through the block parameter
dialog box. These are Autoscale, Show grid, Frame #, and Save Position.
Below are descriptions of the other parameters listed in the Axes menu:

• Autoscale resizes the y-axis to best fit the vertical range of the data. The
numerical limits selected by the autoscale feature are displayed in the
Minimum Y-limit and Maximum Y-limit parameters in the parameter
dialog box. You can change them by editing those values.

• Show grid – When selected, the scope displays a grid according to tick marks
on the x- and y-axes.

• Frame # – When selected, the scope displays the current frame number at
the bottom of the scope window.

• Save Position automatically updates the Scope position parameter in the
Figure/Axes properties field to reflect the scope window’s current position
and size. To make the scope window open at a particular location on the
screen when the simulation runs, simply drag the window to the desired
location, resize it as needed, and select Save Position.

The properties listed in the Channels menu apply to a particular channel. The
parameters listed in this menu are Style, Marker, and Color. They correspond
to the parameters Line style, Marker, and Line color, respectively.

You can also access many of these options by right-clicking with the mouse
anywhere on the scope display. The menu that pops up contains a combination
of the options available in both the Axes and Channels menus.

Discrete-Time Eye Diagram Scope

2-177

Dialog Box

Show Plotting Properties
Select to display plotting properties.

Samples per symbol
Number of samples per symbol. Use with Symbols per trace to determine
the number of samples per trace.

Offset (samples)
Nonnegative integer less than the value of Symbols per trace, specifying
the number of samples to omit before plotting the first point. Tunable.

Symbols per trace
Positive integer specifying the number of symbols plotted per trace.

Traces displayed
Number of traces plotted.

Discrete-Time Eye Diagram Scope

2-178

New traces per display
Positive integer less than Traces displayed, specifying the number of new
traces that appear in each display.

Show Rendering Properties
Select to display rendering properties, as shown in the following figure.

Markers
The marker for points in the eye diagram. Tunable.

Line style
The line style in the eye diagram. Tunable.

Line color
The line color in the eye diagram. Tunable.

Duplicate points at trace boundary
Check to enable duplicate points at the trace boundary. Clear to disable.

Color fading
When selected, the points in the eye diagram fade as the interval of time
after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture with
overwrite raster operations. When cleared, the block renders a fast,
lower-quality picture with XOR raster operations. Tunable.

Discrete-Time Eye Diagram Scope

2-179

Show grid
Toggles the scope grid on and off. Tunable.

Show Axes Properties
Select to display axes properties, as shown in the following figure.

Y-axis minimum
Minimum signal value the scope displays. Tunable.

Y-axis maximum
Maximum signal value the scope displays. Tunable.

In-phase Y-axis label
Label for y-axis of the in-phase diagram. Tunable.

Quadrature Y-axis label
Label for y-axis of the quadrature diagram. Tunable.

Show Figure Properties
Select to display figure properties, as shown in the following figure.

Discrete-Time Eye Diagram Scope

2-180

Open scope at start of simulation
When selected, the scope opens at the start of simulation. When cleared,
you must double-click the block after the start of simulation to open the
scope. Tunable.

Eye diagram to display
Type of eye diagram to display. Choose In-phase and Quadrature to
display real and complex components, or In-phase Only to display only the
real component. Tunable.

Trace number
Displays the number of the current trace in the input sequenced. Tunable.

Scope position
A four-element vector of the form [left bottom width height] specifying the
position of the scope window. (0,0) is the lower left corner of the display.
Tunable.

Title
Title of eye diagram figure window. Tunable.

The following Communications Blockset demos illustrate how to use the
Discrete-Time Eye Diagram Scope block:

• CPM Phase Tree Example – cpmphasetree.mdl

• Filtered Offset QPSK vs. Filtered QPSK – foqpskvsfqpsk.mdl

• Rayleigh Fading Channel – rayleighfading.mdl

• QPSK vs. MSK – qpskvsmsk.mdl

See Also Continuous-Time Eye and Scatter Diagrams, Discrete-Time Scatter Plot
Scope, Discrete-Time Signal Trajectory Scope

Discrete-Time Scatter Plot Scope

2-181

2Discrete-Time Scatter Plot ScopePurpose Display the in-phase and quadrature components of the constellation of a
modulated signal

Library Comm Sinks

Description The Discrete-Time Scatter Plot Scope block displays scatter plots of a
modulated signal, to reveal the modulation characteristics, such as pulse
shaping or channel distortions of the signal.

The Discrete-Time Scatter Plot Scope block has one input port. The input
signal must be complex. The input signal must be a sample-based scalar in
sample-based mode. The input must be a frame-based column vector or a scalar
in frame-based mode.

Example: Viewing the Scatter Plot of a Modulated Signal
The following model creates a scatter plot for a modulated signal. The model
modulates a random signal using the QPSK Modulator block and then filters
the signal with a raised cosine interpolation filter.

To build the model, gather and configure the following blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library, with default parameters

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the
Modulation library of the Communications Blockset, with default
parameters

• AWGN Channel, in the Channels library of the Communications Blockset,
with the following changes to the default parameter settings:

- Set Mode to Signal-to-noise ratio (SNR).

- Set SNR (dB) to 15.

Discrete-Time Scatter Plot Scope

2-182

• FIR Interpolation, in the Multirate Filters sublibrary of the Filtering library
of the DSP Blockset, with the following changes to the default parameter
settings:

- Set FIR Filter Coefficients to rcosine(1, 8,[], 0.5,3).

- Set Interpolation factor to 8.

• Discrete-Time Scatter Plot Scope, in the Comms Sinks library, with the
following changes to the default parameter settings:

- Set Samples per symbol to 2.

Samples per symbol specifies the number of samples in each channel
symbol. Each sample corresponds to a plotted point in the scatter plot.

- Set Offset (samples) to 0.

Offset (samples) specifies the number of samples to skip before plotting
the first point.

- Set Points displayed to 40.

Points displayed specifies the number of points that are displayed at any
instant.

- Set New points per display to 10.

New points per display specifies the number of new points that appear
each time the diagram is refreshed. The number of points that remain in
the diagram from one refresh to the next is Points displayed minus New
points per display.

When you run the model for 50 seconds, the Discrete-Time Scatter Plot Scope
block displays the following plot.

Discrete-Time Scatter Plot Scope

2-183

The plot displays 30 points. Because the Color fading check box in the
Rendering Properties group is selected, points are displayed less brightly the
older they are.

For another example, see Example: Viewing a Sinusoid.

See the reference page for the Discrete-Time Signal Trajectory Scope block to
compare the preceding scatter plot with the trajectory of the same signal. The
Discrete-Time Signal Trajectory Scope block connects the points displayed by
the Discrete-Time Scatter Plot Scope block to display the signal trajectory.

Setting Samples per symbol to 8, increasing Points displayed to 100, and
running the model for 100 seconds produces the following scatter plot.

Older point

Newer Point

Discrete-Time Scatter Plot Scope

2-184

Markers and Color

The Markers and Color parameters, which are visible when Rendering
Properties is checked, specify the style and color of markers in the scatter plot.
For details on the options for these parameters, see the reference page for the
Discrete-Time Eye Diagram Scope block.

Recommended Settings
The following table summarizes the recommended parameter settings for the
Discrete-Time Scatter Plot Scope.

Discrete-Time Scatter Plot Scope

2-185

Parameter Recommended Setting

Samples per symbol Same as the Samples per symbol setting in the
modulator block, or the Interpolation factor
setting in the interpolation block

Points displayed 10 times the alphabet size of the modulator

New points per
display

Same as Points displayed for greater speed
A small positive integer for best animation

Line style Solid dash (-)

Line color Blue (b)

Color fading Check Color fading for animation that
resembles an oscilloscope.
Clear for greater speed and animation that
resembles a plot.

High quality
rendering

Check High quality rendering for higher
quality rendering.
Clear for greater speed.

Open at start of
simulation

Check Open at start of simulation to view the
signal at the start of simulation.
Clear to view the signal after convergence to
steady state and for greater initial speed.

X-axis minimum Approximately 10% less than the expected
minimum value of the signal

X-axis maximum Approximately 10% greater than the expected
maximum value of the signal

Discrete-Time Scatter Plot Scope

2-186

Dialog Box

Show Plotting Properties
Select to display plotting properties.

Samples per symbol
Number of samples per symbol.

Offset (samples)
Samples to skip before plotting points.

Points displayed
Total number of points plotted.

New points per display
Number of new points that appear in each display.

Discrete-Time Scatter Plot Scope

2-187

Show Rendering Properties
Select to display rendering properties, as shown in the following figure:

Markers
Line markers used in the scatter plot. Tunable.

Line color
The line color used in the scatter plot. Tunable.

Color fading
When selected, the points in the scatter plot fade as the interval of time
after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture with
overwrite raster operations. When cleared, the block renders a fast,
lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable

Discrete-Time Scatter Plot Scope

2-188

Show Axes Properties
Select to display axes properties, as shown in the following figure.

X-axis minimum
Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum
Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum
Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum
Maximum signal value the scope displays on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.

Show Figure Properties
Select to display figure properties, as shown in the following figure.

Discrete-Time Scatter Plot Scope

2-189

Open at start of simulation
When selected, the scope opens at the start of simulation. When cleared,
you must double-click the block after the start of simulation to open the
scope.

Point number
Displays the number of the current point in the input sequence. Tunable.

Scope position
A four-element vector of the form [left bottom width height] specifying the
position of the scope window. (0,0) is the lower left corner of the display.
Tunable.

Title
Title of scatter plot. Tunable.

The following demos in the Communications Blockset illustrate how to use the
Discrete-Time Scatter Plot Scope block:

• Digital Video Broadcasting Model – dvbt_sim.mdl

• DS Spread Spectrum Example – spreadspectrum.mdl

• HiperLAN/2 – hiperlan2.mdl

• Phase Noise Effects in 256 QAM - phasenoise_sim.mdl

• Rayleigh Fading Channel – rayleighfading.mdl

See Also Continuous-Time Eye and Scatter Diagrams, Discrete-Time Eye Diagram
Scope, Discrete-Time Signal Trajectory Scope, Real-Imag to Complex

Discrete-Time Signal Trajectory Scope

2-190

2Discrete-Time Signal Trajectory ScopePurpose Display a modulated signal in its signal space by plotting its in-phase
component versus its quadrature component

Library Comm Sinks

Description The Discrete-Time Signal Trajectory Scope displays the trajectory of a
modulated signal in its signal space by plotting its in-phase component versus
its quadrature component.

The Discrete-Time Signal Trajectory Scope block has one input port. The input
signal must be complex. The input signal must be a sample-based scalar in
sample-based mode. The input must be a frame-based column vector or a scalar
in frame-based mode.

Example: Viewing the Signal Trajectory of a Modulated Signal
The following model shows the signal trajectory of a modulated signal. The
model modulates a random signal using the QPSK Modulator block and then
filters the signal with a raised cosine interpolation filter.

To build the model, gather and configure the following blocks:

• Random Integer Generator, in the Data Sources sublibrary of the Comm
Sources library, with default parameters

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the
Modulation library of the Communications Blockset, with default
parameters

• AWGN Channel, in the Channels library of the Communications Blockset,
with the following changes to the default parameter settings:

- Set Mode to Signal-to-noise ratio (SNR).

- Set SNR (dB) to 15.

Discrete-Time Signal Trajectory Scope

2-191

• FIR Interpolation, in the Multirate Filters sublibrary of the Filtering library
of the DSP Blockset, with the following changes to the default parameter
settings:

- Set FIR Filter Coefficients to rcosine(1, 8,[], 0.5,3).

- Set Interpolation factor to 8.

• Discrete-Time Signal Trajectory Scope, in the Comms Sinks library, with the
following changes to the default parameter settings:

- Set Samples per symbol to 8.

Samples per symbol specifies the number of samples in each channel
symbol. Each sample corresponds to a plotted point in the signal
trajectory.

- Set Symbols displayed to 7.

Symbols displayed specifies the number of symbols displayed in the
signal trajectory. The total number of points displayed is the product of
Samples per symbol and Symbols displayed.

- Set New symbols per display to 10.

New symbols per display specifies the number of new symbols that
appear each time the diagram is refreshed. The number of symbols that
remain in the diagram from one refresh to the next is Symbols displayed
minus New symbols per display.

When you run the model for 50 seconds, the Discrete-Time Signal Trajectory
Scope displays the following trajectory.

Discrete-Time Signal Trajectory Scope

2-192

The plot displays 40 symbols. Because the Color fading check box in the
Rendering Properties group is selected, symbols are displayed less brightly
the older they are.

For another example, see Example: Viewing a Sinusoid.

See the reference page for the Discrete-Time Scatter Plot Scope block to
compare the preceding signal trajectory with the scatter plot of the same
signal. The Discrete-Time Signal Trajectory Scope block connects the points
displayed by the Discrete-Time Scatter Plot Scope block to display the signal
trajectory.

If you increase Symbols displayed to 100, the model produces the following
signal trajectory.

Discrete-Time Signal Trajectory Scope

2-193

The total number of points displayed at any instant is 800, which is the product
of the parameters Samples per symbol and Symbols displayed.

For another example, see Example: Viewing a Sinusoid.

Line Style and Color

The Line style and Line color parameters in the Rendering Properties group
control the appearance of the signal trajectory. The Line style parameter
specifies the style for lines in the signal trajectory. For details on the options
for these parameters, see the reference page for the Discrete-Time Eye
Diagram Scope block.

Discrete-Time Signal Trajectory Scope

2-194

Recommended Settings
The following table summarizes the recommended parameter settings for the
Discrete-Time Signal Trajectory Scope.

Parameter Recommended Setting

Samples per symbol Same as the Samples per symbol setting in the
modulator block, or the Interpolation factor
used in the interpolation block

Symbols displayed 10 times the alphabet size of the modulator, M

New symbols per
display

Same as Symbols displayed for greater speed
A small positive integer for best animation

Line style Solid dash (-)

Line color Blue (b)

Color fading Check Color fading for animation that
resembles an oscilloscope.
Clear for greater speed and animation that
resembles a plot.

High quality
rendering

Check High quality rendering for higher
quality rendering.
Clear for greater speed.

Open at start of
simulation

Check Open at start of simulation to view the
signal at the start of simulation.
Clear to view the signal after convergence to
steady state and for greater initial speed.

Y-axis minimum Approximately 10% less than the expected
minimum value of the signal

Y-axis maximum Approximately 10% greater than the expected
maximum value of the signal

Discrete-Time Signal Trajectory Scope

2-195

Dialog Box

Show Plotting Properties
Select to display plotting properties.

Samples per symbol
Number of samples per symbol.

Symbols displayed
Total number of symbols plotted.

New symbols per display
Number of new symbols that appear in each display.

Show Rendering Properties
Select to display rendering properties, as shown in the following figure.

Discrete-Time Signal Trajectory Scope

2-196

Line markers
The line markers used in the signal trajectory. Tunable.

Line color
The line color used in the signal trajectory. Tunable.

Color fading
When selected, the points in the signal trajectory fade as the interval of
time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture with
overwrite raster operations. When cleared, the block renders a fast,
lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.

Show Axes Properties
Select to display axes properties, as shown in the following figure.

X-axis minimum
Minimum value the scope displays on the x-axis. Tunable.

Discrete-Time Signal Trajectory Scope

2-197

X-axis maximum
Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum
Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum
Maximum signal value the scope display on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.

Show Figure Properties
Select to display figure properties, as shown in the following figure.

Open at start of simulation
When selected, the scope opens at the start of simulation. When cleared,
you must double-click the block after the start of simulation to open the
scope. Tunable

Symbol number
Displays the number of the current symbol in the input sequence. Tunable.

Scope position
A four-element vector of the form [left bottom width height] specifying the
position of the scope window. (0,0) is the lower left corner of the display.
Tunable.

Discrete-Time Signal Trajectory Scope

2-198

Title
Title of signal trajectory plot. Tunable.

The following demos in the Communcations Blockset illustrate how to use the
Discrete-Time Signal Trajectory Scope:

• Filtered Offset QPSK vs. Filtered QPSK – foqpskvsfqpsk.mdl

• GMSK vs. MSK – gmskvsmsk.mdl

See Also Continuous-Time Eye and Scatter Diagrams, Discrete-Time Eye Diagram
Scope, Discrete-Time Scatter Plot Scope

Discrete-Time VCO

2-199

2Discrete-Time VCO Purpose Implement a voltage-controlled oscillator in discrete time

Library Controlled Sources sublibrary of Comm Sources

Description The Discrete-Time VCO (voltage-controlled oscillator) block generates a signal
whose frequency shift from the Oscillation frequency parameter is
proportional to the input signal. The input signal is interpreted as a voltage. If
the input signal is u(t), then the output signal is

where Ac is the Output amplitude, fc is the Oscillation frequency, kc is the
Input sensitivity, and ϕ is the Initial phase

This block uses a discrete-time integrator to interpret the equation above.

The input and output signals are both scalars.

Dialog Box

Output amplitude
The amplitude of the output.

y t() Ac 2πfct 2πkc u τ()dτ
0
t
∫ ϕ+ +()cos=

Discrete-Time VCO

2-200

Oscillation frequency (Hz)
The frequency of the oscillator output when the input signal is zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift from the
Oscillation frequency value. The units of Input sensitivity are Hertz per
volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

Sample time
The calculation sample time.

See Also Voltage-Controlled Oscillator

DPCM Decoder

2-201

2DPCM DecoderPurpose Decode differential pulse code modulation

Library Source Coding

Description The DPCM Decoder block recovers a message from a quantized signal using
differential pulse code demodulation. The input represents a DPCM-encoded
quantization index. The input must be a scalar signal. Its two outputs are the
recovered signal and the quantized predictive error.

The description of the Sampled Quantizer Encode block gives more detailed
information about quantization indices and quantization-encoded signals. The
description of the DPCM Encoder block gives more information about
implementing DPCM.

Dialog Box

Predictor numerator
The vector of coefficients of the numerator of the predictor transfer
function, in order of ascending powers of z-1. The first entry must be zero.

Predictor denominator
The vector of coefficients of the denominator of the predictor transfer
function, in order of ascending powers of z-1. Usually this parameter is 1.

Quantization codebook
The vector of output values that the quantizer assigns to each partition.

DPCM Decoder

2-202

Sample time
The block’s sample time.

Match these parameters to the ones in the corresponding DPCM Encoder block.

Pair Block DPCM Encoder

References [1] Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons,
1994.

DPCM Encoder

2-203

2DPCM EncoderPurpose Encode using differential pulse code modulation

Library Source Coding

Description The DPCM Encoder block quantizes the input signal using differential pulse
code modulation. The input must be a scalar signal. Its two outputs are the
quantization index and the quantization-encoded signal.

This block uses the Sampled Quantizer Encode block. The description of that
block gives more detailed information about quantization indices and
quantization-encoded signals.

Quantization partition is a vector whose entries give the endpoints of the
partition intervals. Quantization codebook, a vector whose length exceeds
the length of Quantization partition by one, prescribes a value for each
partition in the quantization. The first element of Quantization codebook is
the value for the interval between negative infinity and the first element of
Quantization partition.

You can think of the predictor as a transfer function for an IIR filter, hence a
rational function of z-1. Specify the predictor’s numerator and denominator by
listing their coefficients in the vectors Predictor numerator and Predictor
denominator, respectively. List the coefficients in order of increasing powers
of z-1.

Note The first entry of Predictor numerator must be zero. A nonzero entry
there would fail to make sense conceptually, and would create an algebraic
loop in the implementation.

You can use the function dpcmopt in the Communications Toolbox to train the
Predictor numerator, Predictor denominator, Quantization partition, and
Quantization codebook parameters. The output of dpcmopt omits the
denominator of the predictor, assuming that it will be 1. In most DPCM
applications, the denominator of the predictor transfer function is 1.

If Predictor numerator has the form [0, x] and Predictor denominator is 1,
then the modulation is called delta modulation.

DPCM Encoder

2-204

Dialog Box

Predictor numerator
The vector of coefficients of the numerator of the predictor transfer
function, in order of ascending powers of z-1. The first entry must be zero.

Predictor denominator
The vector of coefficients of the denominator of the predictor transfer
function, in order of ascending powers of z-1. Usually this parameter is 1.

Quantization partition
The vector of endpoints of the partition intervals. The elements must be in
strictly ascending order.

Quantization codebook
The vector of output values that the quantizer assigns to each partition.

Sample time
The block’s sample time.

Pair Block DPCM Decoder

References [1] Kondoz, A. M. Digital Speech. Chichester, England: John Wiley & Sons,
1994.

DQPSK Demodulator Baseband

2-205

2DQPSK Demodulator BasebandPurpose Demodulate DQPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The DQPSK Demodulator Baseband block demodulates a signal that was
modulated using the differential quaternary phase shift keying method. The
input is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The output depends on the
phase difference between the current symbol and the previous symbol. The
first integer (or binary pair, if the Output type parameter is set to Bit) in the
block’s output is the initial condition of zero because there is no previous
symbol.

The input can be either a scalar or a frame-based column vector.

Outputs and Constellation Types
If the Output type parameter is set to Integer, then the block maps a phase
difference of

θ + πm/2

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

If the Output type parameter is set to Bit, then the output contains pairs of
binary values. The reference page for the DQPSK Modulator Baseband block
shows which phase differences map to each binary pair, for the cases when the
Constellation ordering parameter is either Binary or Gray.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

DQPSK Demodulator Baseband

2-206

Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output bits. This
field is active only when Output type is set to Bit.

Phase offset (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block DQPSK Modulator Baseband

See Also M-DPSK Demodulator Baseband, DBPSK Demodulator Baseband, QPSK
Demodulator Baseband

DQPSK Modulator Baseband

2-207

2DQPSK Modulator BasebandPurpose Modulate using the differential quaternary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The DQPSK Modulator Baseband block modulates using the differential
quaternary phase shift keying method. The output is a baseband
representation of the modulated signal.

The input must be a discrete-time signal.

Inputs and Constellation Types
If the Input type parameter is set to Integer, then valid input values are 0, 1,
2, and 3. In this case, the input can be either a scalar or a frame-based column
vector. If the first input is m, then the modulated symbol is

exp(jθ + jπm/2)

where θ is the Phase offset parameter. If a successive input is m, then the
modulated symbol is the previous modulated symbol multiplied by
exp(jθ + jπm/2).

If the Input type parameter is set to Bit, then the input contains pairs of
binary values. The input can be either a vector of length two or a frame-based
column vector whose length is an even integer. The figure below shows the
complex numbers by which the block multiples the previous symbol to compute
the current symbol, depending on whether the Constellation ordering
parameter is set to Binary or Gray. The figure assumes that the Phase offset
parameter is set to pi/4; in other cases, the two schematics would be rotated
accordingly.

DQPSK Modulator Baseband

2-208

The figure below shows the signal constellation for the DQPSK modulation
method when the Phase offset parameter is π/4. The arrows indicate the four
possible transitions from each symbol to the next symbol. The Binary and
Gray options determine which transition is associated with each pair of input
values.

More generally, if the Phase offset parameter has the form π/k for some
integer k, then the signal constellation has 2k points.

1110

01 00

1011

01 00

Binary Gray

Constellation point

Transition to next point

DQPSK Modulator Baseband

2-209

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Phase offset (rad)
The phase difference between the previous and current modulated symbols
when the input is zero.

DQPSK Modulator Baseband

2-210

Samples per symbol
The number of output samples that the block produces for each integer or
pair of bits in the input.

Pair Block DQPSK Demodulator Baseband

See Also M-DPSK Modulator Baseband, DBPSK Modulator Baseband, QPSK
Modulator Baseband

DSB AM Demodulator Baseband

2-211

2DSB AM Demodulator Baseband Purpose Demodulate DSB-AM-modulated data

Library Analog Baseband Modulation, in Modulation

Description The DSB AM Demodulator Baseband block demodulates a signal that was
modulated using double-sideband amplitude modulation. The input is a
baseband representation of the modulated signal. The input is complex, while
the output is real. The input must be a sample-based scalar signal.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Output signal offset
The same as the Input signal offset parameter in the corresponding DSB
AM Modulator Baseband block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

DSB AM Demodulator Baseband

2-212

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Initial phase (rad)
The initial phase in the corresponding DSB AM Modulator Baseband block.

Sample time
The sample time of the output signal.

Pair Block DSB AM Modulator Baseband

DSB AM Demodulator Passband

2-213

2DSB AM Demodulator Passband Purpose Demodulate DSB-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The DSB AM Demodulator Passband block demodulates a signal that was
modulated using double-sideband amplitude modulation. The block uses the
envelope detection method. The input is a passband representation of the
modulated signal. Both the input and output signals are real sample-based
scalar signals.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Block

Offset factor
The same as the Input signal offset parameter in the corresponding AM
with Carrier block.

Carrier frequency (Hz)
The frequency of the carrier in the corresponding AM with Carrier block.

DSB AM Demodulator Passband

2-214

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Sample time
The sample time of the output signal.

Pair Block DSB AM Modulator Passband

See Also DSB AM Demodulator Baseband

DSB AM Modulator Baseband

2-215

2DSB AM Modulator BasebandPurpose Modulate using double-sideband amplitude modulation

Library Analog Baseband Modulation, in Modulation

Description The DSB AM Modulator Baseband block modulates using double-sideband
amplitude modulation. The output is a baseband representation of the
modulated signal. The input signal is real, while the output signal is complex.
The input must be a sample-based scalar signal.

If the input is u(t) as a function of time t, then the output is

where:

• θ is the Initial phase parameter.

• k is the Input signal offset parameter.

Dialog Box

Input signal offset
The offset factor k. This value should be greater than or equal to the
absolute value of the minimum of the input signal.

Initial phase (rad)
The phase of the modulated signal.

Pair Block DSB AM Demodulator Baseband

See Also DSBSC AM Modulator Baseband, SSB AM Modulator Baseband

u t() k+()ejθ

DSB AM Modulator Passband

2-216

2DSB AM Modulator Passband Purpose Modulate using double-sideband amplitude modulation

Library Analog Passband Modulation, in Modulation

Description The DSB AM Modulator Passband block modulates using double-sideband
amplitude modulation. The output is a passband representation of the
modulated signal. Both the input and output signals are real sample-based
scalar signals.

If the input is u(t) as a function of time t, then the output is

where:

• k is the Input signal offset parameter.

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

It is common to set the value of k to the maximum absolute value of the
negative part of the input signal u(t).

Typically, an appropriate Carrier frequency value is much higher than the
highest frequency of the input signal. To avoid having to use a high carrier
frequency and consequently a high sampling rate, you can use baseband
simulation instead of passband simulation.

Dialog Box

u t() k+() 2πfct θ+()cos

DSB AM Modulator Passband

2-217

Input signal offset
The offset factor k. This value should be greater than or equal to the
absolute value of the minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.

Pair Block DSB AM Demodulator Passband

See Also DSB AM Modulator Baseband, DSBSC AM Modulator Passband, SSB AM
Modulator Passband

DSBSC AM Demodulator Baseband

2-218

2DSBSC AM Demodulator Baseband Purpose Demodulate DSBSC-AM-modulated data

Library Analog Baseband Modulation, in Modulation

Description The DSBSC AM Demodulator Baseband block demodulates a signal that was
modulated using double-sideband suppressed-carrier amplitude modulation.
The input is a baseband representation of the modulated signal. The input is
complex, while the output is real. The input must be a sample-based scalar
signal.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

DSBSC AM Demodulator Baseband

2-219

Initial phase (rad)
The initial phase in the corresponding DSBSC AM Modulator Baseband
block.

Sample time
The sample time of the output signal.

Pair Block DSBSC AM Modulator Baseband

See Also DSB AM Demodulator Baseband, SSB AM Demodulator Baseband

DSBSC AM Demodulator Passband

2-220

2DSBSC AM Demodulator Passband Purpose Demodulate DSBSC-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The DSBSC AM Demodulator Passband block demodulates a signal that was
modulated using double-sideband suppressed-carrier amplitude modulation.
The input is a passband representation of the modulated signal. Both the input
and output signals are real sample-based scalar signals.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Carrier frequency (Hz)
The carrier frequency in the corresponding DSBSC AM Modulator
Passband block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

DSBSC AM Demodulator Passband

2-221

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Initial phase (rad)
The initial phase of the carrier in radians.

Sample time
The sample time of the output signal.

Pair Block DSBSC AM Modulator Passband

See Also DSBSC AM Demodulator Baseband, DSB AM Demodulator Passband, SSB
AM Demodulator Passband

DSBSC AM Modulator Baseband

2-222

2DSBSC AM Modulator Baseband Purpose Modulate using double-sideband suppressed-carrier amplitude modulation

Library Analog Baseband Modulation, in Modulation

Description The DSBSC AM Modulator Baseband block modulates using double-sideband
suppressed-carrier amplitude modulation. The output is a baseband
representation of the modulated signal. The block accepts a real input signal
and produces a complex output signal. The input may be continuous-time or
discrete-time; the output sample time matches the input sample time. The
input must be a sample-based scalar signal.

If the input is u(t) as a function of time t, then the output is

where θ is the Initial phase parameter.

Dialog Box

Initial phase (rad)
The phase of the modulated signal in radians.

Pair Block DSBSC AM Demodulator Baseband

See Also DSB AM Modulator Baseband, SSB AM Modulator Baseband

u t()ejθ

DSBSC AM Modulator Passband

2-223

2DSBSC AM Modulator Passband Purpose Modulate using double-sideband suppressed-carrier amplitude modulation

Library Analog Passband Modulation, in Modulation

Description The DSBSC AM Modulator Passband block modulates using double-sideband
suppressed-carrier amplitude modulation. The output is a passband
representation of the modulated signal. Both the input and output signals are
real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

where fc is the Carrier frequency parameter and θ is the Initial phase
parameter.

Typically, an appropriate Carrier frequency value is much higher than the
highest frequency of the input signal. To avoid having to use a high carrier
frequency and consequently a high sampling rate, you can use baseband
simulation (DSBSC AM Modulator Baseband block) instead of passband
simulation.

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

u t() 2πfct θ+()cos

DSBSC AM Modulator Passband

2-224

Pair Block DSBSC AM Demodulator Passband

See Also DSBSC AM Modulator Baseband, DSB AM Modulator Passband, SSB AM
Modulator Passband

Enabled Quantizer Encode

2-225

2Enabled Quantizer EncodePurpose Quantize a signal, using trigger to control processing

Library Source Coding

Description The Enabled Quantizer Encode block performs quantization when a trigger
signal occurs. This block is similar to the Sampled Quantizer Encode block,
except that a trigger signal at the second input port controls the quantization
processing. This block renews its output when the scalar trigger signal is
nonzero. For more about quantization, see the reference page for the Sampled
Quantizer Encode block.

This block has two input ports and three output ports. The first input signal is
the data to be quantized, while the second is the trigger signal that controls the
timing of quantization. The three output signals represent the quantization
index, quantization value, and mean square distortion, respectively.

The first input can be either a scalar, a sample-based vector, or a frame-based
row vector. This block processes each vector element independently. Each
output signal is a vector of the same length as the first input signal. The trigger
input must be a scalar.

Dialog Box

Enabled Quantizer Encode

2-226

Quantization partition
The vector of endpoints of the partition intervals. The elements must be in
strictly ascending order.

Quantization codebook
The vector of output values assigned to each partition.

Input signal vector length
The length of the input signal.

Pair Block Quantizer Decode

See Also Sampled Quantizer Encode

Error Rate Calculation

2-227

2Error Rate CalculationPurpose Compute the bit error rate or symbol error rate of input data

Library Comm Sinks

Description The Error Rate Calculation block compares input data from a transmitter with
input data from a receiver. It calculates the error rate as a running statistic, by
dividing the total number of unequal pairs of data elements by the total
number of input data elements from one source.

You can use this block to compute either symbol or bit error rate, because it
does not consider the magnitude of the difference between input data elements.
If the inputs are bits, then the block computes the bit error rate. If the inputs
are symbols, then it computes the symbol error rate.

This block inherits the sample time of its inputs.

Input Data
This block has between two and four input ports, depending on how you set the
mask parameters. The inports marked Tx and Rx accept transmitted and
received signals, respectively. The Tx and Rx signals must share the same
sampling rate.

The Tx and Rx inputs can be either scalars or frame-based column vectors. If Tx
is a scalar and Rx is a vector, or vice-versa, then the block compares the scalar
with each element of the vector. (Overall, the block behaves as if you had
preprocessed the scalar signal with the DSP Blockset’s Repeat block using the
Maintain input frame rate option.)

If you check the Reset port box in the mask, then an additional inport appears,
labeled Rst. The Rst input must be a sample-based scalar signal and must have
the same sampling rate as the Tx and Rx signals. When the Rst input is
nonzero, the block clears its error statistics and then computes them anew.

If you set the Computation mode mask parameter to Select samples from
port, then an additional inport appears, labeled Sel. The Sel input indicates
which elements of a frame are relevant for the computation; this is explained
further, in the last subbullet below. The Sel input can be either a sample-based
column vector or a one-dimensional vector.

Error Rate Calculation

2-228

The guidelines below indicate how you should configure the inputs and the
mask parameters depending on how you want this block to interpret your Tx
and Rx data.

• If both data signals are scalar, then this block compares the Tx scalar signal
with the Rx scalar signal. You should leave the Computation mode
parameter at its default value, Entire frame.

• If both data signals are vectors, then this block compares some or all of the
Tx and Rx data:

- If you set the Computation mode parameter to Entire frame, then the
block compares all of the Tx frame with all of the Rx frame.

- If you set the Computation mode parameter to Select samples from
mask, then the Selected samples from frame field appears in the mask.
This parameter field accepts a vector that lists the indices of those
elements of the Rx frame that you want the block to consider. For example,
to consider only the first and last elements of a length-six receiver frame,
set the Selected samples from frame parameter to [1 6]. If the Selected
samples from frame vector includes zeros, then the block ignores them.

- If you set the Computation mode parameter to Select samples from
port, then an additional input port, labeled Sel, appears on the block icon.
The data at this input port must have the same format as that of the
Selected samples from frame mask parameter described above.

• If one data signal is a scalar and the other is a vector, then this block
compares the scalar with each entry of the vector. The three subbullets above
are still valid for this mode, except that if Rx is a scalar, then the phrase “Rx
frame” above refers to the vector expansion of Rx.

Note Simulink requires that input signals have constant length throughout
a simulation. If you choose the Select samples from port option and want the
number of elements in the subframe to vary during the simulation, then you
should pad the Sel signal with zeros. (See the Zero Pad block in the DSP
Blockset.) The Error Rate Calculation block ignores zeros in the Sel signal.

Error Rate Calculation

2-229

Output Data
This block produces a vector of length three, whose entries correspond to:

• The error rate

• The total number of errors, that is, comparisons between unequal elements

• The total number of comparisons that the block made

The block sends this output data to the workspace or to an output port,
depending on how you set the Output data parameter in the mask:

• If you set the Output data parameter to Workspace and fill in the Variable
name parameter, then that variable contains the current value when the
simulation ends. Pausing the simulation does not cause the block to write
interim data to the variable.

If you plan to use this block along with the Real-Time Workshop, then you
should not use the Workspace option; instead, use the Port option below and
connect the output port to a Simulink To Workspace block.

• If you set the Output data parameter to Port, then an output port appears.
This output port contains the running error statistics.

Delays
The Receive delay and Computation delay parameters implement two
different types of delays for this block. One is useful when part of your model
causes a lag in the received data, and the other is useful when you want to
ignore the transient behavior of both input signals:

• The Receive delay parameter is the number of samples by which the
received data lags behind the transmitted data. This parameter tells the
block which samples “correspond” to each other and should be compared. The
receive delay persists throughout the simulation.

• The Computation delay parameter tells the block to ignore the specified
number of samples at the beginning of the comparison.

Error Rate Calculation

2-230

Note The Version 1.4 Error Rate Calculation block considers a vector input
to be a sample, whereas the current block considers a vector input to be a
frame of multiple samples. For vector inputs of length n, a Receive delay of k
in the Version 1.4 block is equivalent to a Receive delay of k*n in the current
block.

If you use the Select samples from mask or Select samples from port option,
then each delay parameter refers to the number of samples that the block
receives, whether the block ultimately ignores some of them or not.

Stopping the Simulation Based on Error Statistics
You can configure this block so that its error statistics control the duration of
simulation. This is useful for computing reliable steady-state error statistics
without knowing in advance how long transient effects might last. To use this
mode, check the Stop simulation check box. The block attempts to run the
simulation until it detects Target number of errors errors. However, the
simulation stops before detecting enough errors if the time reaches the model’s
Stop time setting (in the Simulation Parameters dialog box), if the Error Rate
Calculation block makes Maximum number of symbols comparisons, or if
another block in the model directs the simulation to stop.

To ignore either of the two stopping criteria in this block, set the corresponding
parameter (Target number of errors or Maximum number of symbols) to
Inf. For example, to reach a target number of errors without stopping the
simulation early, set Maximum number of symbols to Inf and set the model’s
Stop time to Inf.

Examples The figure below shows how the block compares pairs of elements and counts
the number of error events. This example assumes that the sample time of each
input signal is 1 second and that the block’s parameters are as follows:

• Receive delay = 2

• Computation delay = 0

• Computation mode = Entire frame

Error Rate Calculation

2-231

The input signals are both frame-based column vectors of length three.
However, the schematic arranges each column vector horizontally and aligns
pairs of vectors so as to reflect a receive delay of two samples. At each time step,
the block compares elements of the Rx signal with those of the Tx signal that
appear directly above them in the schematic. For instance, at time 1, the block
compares 2, 4, and 1 from the Rx signal with 2, 3, and 1 from the Tx signal.

The values of the first two elements of Rx appear as asterisks because they do
not influence the output. Similarly, the 6 and 5 in the Tx signal do not influence
the output up to time 3, though they would influence the output at time 4.

In the error rates on the right side of the figure, each numerator at time t
reflects the number of errors when considering the elements of Rx up through
time t.

If the block’s Reset port box had been checked and a reset had occurred at
time = 3 seconds, then the last error rate would have been 2/3 instead of 4/10.
This value 2/3 would reflect the comparison of 3, 2, and 1 from the Rx signal
with 7, 7, and 1 from the Tx signal. The figure below illustrates this scenario.

1 2 3 1 2 3 1 7 7 1 6 5

* * 1 2 4 1 2 3 3 3 2 1
Rx

Tx
t=0 t=1

t=0 t=1

Error rates as fractions

0/1 1/4 2/7 4/10

t=0 t=1

time time

Note: Tx and Rx inputs are frame-based column vectors.

1 2 3 1 2 3 1 7 7 1 6 5

* * 1 2 4 1 2 3 3 3 2 1Rx

Tx

t=0 t=1

Error rates as fractions

0/1 1/4 2/7 2/3

t=0 t=1

time time
t=0

0 0 0 1

t=1

Note: Tx and Rx inputs are frame-based column vectors.

Error Rate Calculation

2-232

Dialog Box

Receive delay
Number of samples by which the received data lags behind the transmitted
data. (If Tx or Rx is a vector, then each entry represents a sample.)

Computation delay
Number of samples that the block should ignore at the beginning of the
comparison.

Computation mode
Either Entire frame, Select samples from mask, or Select samples from
port, depending on whether the block should consider all or only part of the
input frames.

Error Rate Calculation

2-233

Selected samples from frame
A vector that lists the indices of the elements of the Rx frame vector that
the block should consider when making comparisons. This field appears
only if Computation mode is set to Select samples from mask.

Output data
Either Workspace or Port, depending on where you want to send the
output data.

Variable name
Name of workspace variable for the output data vector. This field appears
only if Output data is set to Workspace.

Reset port
If you check this box, then an additional input port appears, labeled Rst.

Stop simulation
If you check this box, then the simulation runs only until this block detects
a specified number of errors or performs a specified number of
comparisons, whichever comes first.

Target number of errors
The simulation stops after detecting this number of errors. This field is
active only if Stop simulation is checked.

Maximum number of symbols
The simulation stops after making this number of comparisons. This field
is active only if Stop simulation is checked.

FM Demodulator Baseband

2-234

2FM Demodulator Baseband Purpose Demodulate FM-modulated data

Library Analog Baseband Modulation, in Modulation

Description The FM Demodulator Baseband block demodulates a signal that was
modulated using frequency modulation. The input is a baseband
representation of the modulated signal. The input is complex, while the output
is real. The input must be a sample-based scalar signal.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Initial phase (rad)
The initial phase in the corresponding FM Modulator Baseband block.

Modulation constant (Hertz per volt)
The modulation constant in the corresponding FM Modulator Baseband
block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

FM Demodulator Baseband

2-235

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Sample time
The sample time of the output signal.

Pair Block FM Modulator Baseband

FM Demodulator Passband

2-236

2FM Demodulator Passband Purpose Demodulate FM-modulated data

Library Analog Passband Modulation, in Modulation

Description The FM Demodulator Passband block demodulates a signal that was
modulated using frequency modulation. The input is a passband
representation of the modulated signal. Both the input and output signals are
real sample-based scalar signals.

In the course of demodulating, the block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

The block uses a voltage-controlled oscillator (VCO) in the demodulation. The
Initial phase parameter gives the initial phase of the VCO.

Dialog Box

Carrier frequency (Hz)
The carrier frequency in the corresponding FM Modulator Passband block.

Initial phase (rad)
The initial phase of the VCO in radians.

FM Demodulator Passband

2-237

Modulation constant (Hertz per volt)
The modulation constant in the corresponding FM Modulator Passband
block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Sample time
The sample time in the corresponding FM Modulator Passband block.

Pair Block FM Modulator Passband

See Also FM Demodulator Baseband

FM Modulator Baseband

2-238

2FM Modulator Baseband Purpose Modulate using frequency modulation

Library Analog Baseband Modulation, in Modulation

Description The FM Modulator Baseband block modulates using frequency modulation.
The output is a baseband representation of the modulated signal. The input
signal is real, while the output signal is complex. The input must be a
sample-based scalar signal. In the frequency modulation technique, the
frequency of the modulated signal varies according to the amplitude of the
input signal.

If the input is u(t) as a function of time t, then the output is

where θ is the Initial phase parameter and Kc is the Modulation constant
parameter.

Dialog Box

Initial phase (rad)
The initial phase of the modulated signal in radians.

Modulation constant (Hertz per volt)
The modulation constant Kc.

jθ 2πjKc u τ() τdt∫+()exp

FM Modulator Baseband

2-239

Sample time
The sample time of the output signal. It must be a positive number.

Symbol interval (s)
Inf by default. To use this block to model FSK, set this parameter to the
length of time required to transmit a single information bit.

Pair Block FM Demodulator Baseband

Free Space Path Loss

2-240

2Free Space Path LossPurpose Reduce the amplitude of the input signal by the amount specified

Library RF Impairments

Description The Free Space Path Loss block simulates the loss of signal power due to the
distance between transmitter and receiver. The block reduces the amplitude of
the input signal by an amount that is determined in either of two ways:

• By the Distance (km) and Frequency (MHz) parameters, if you specify
Distance and Frequency in the Mode field

• By the Loss (dB) parameter, if you specify Decibels in the Mode field

The model shown in the following figure illustrates the effect of the Free Space
Path Loss Block with the following parameter settings:

Mode is set to Distance and Frequency.

• Distance (km) is set to 0.5

• Frequency (MHz) is set to 180

Free Space Path Loss

2-241

Dialog Box

Mode
Method of specifying the amount by which the signal power is reduced. The
choices are Decibels and Distance and Frequency.

Loss
The signal loss in decibels. This parameter is visible when you select
Decibels in the Mode field.

Distance
Distance between transmitter and receiver in kilometers. This parameter
is visible when you select Distance and Frequency in the Mode field.

Free Space Path Loss

2-242

Carrier frequency (MHz)
The carrier frequency in megahertz. This parameter is visible when you
select Distance and Frequency in the Mode field.

See Also Memoryless Nonlinearity

FM Modulator Passband

2-243

2FM Modulator Passband Purpose Modulate using frequency modulation

Library Analog Passband Modulation, in Modulation

Description The FM Modulator Passband block modulates using frequency modulation.
The output is a passband representation of the modulated signal. The output
signal’s frequency varies with the input signal’s amplitude. Both the input and
output signals are real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

where:

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

• Kc is the Modulation constant parameter.

Typically, an appropriate Carrier frequency value is much higher than the
highest frequency of the input signal. To avoid having to use a high carrier
frequency and consequently a high sampling rate, you can use baseband
simulation (FM Modulator Baseband block) instead of passband simulation.

By the Nyquist sampling theorem, the reciprocal of the Sample time
parameter must exceed twice the Carrier frequency parameter.

2πfct 2πKc u τ() τdt∫ θ+ +()cos

FM Modulator Passband

2-244

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Modulation constant (Hertz per volt)
The modulation constant Kc.

Sample time
The sample time of the output signal. It must be a positive number.

Symbol interval
Inf by default. To use this block to model FSK, set this parameter to the
length of time required to transmit a single information bit.

Pair Block FM Demodulator Passband

See Also FM Modulator Baseband

Gaussian Noise Generator

2-245

2Gaussian Noise Generator Purpose Generate Gaussian distributed noise with given mean and variance values

Library Noise Generators sublibrary of Comm Sources

Description The Gaussian Noise Generator block generates discrete-time white Gaussian
noise. You must specify the Initial seed vector in the simulation.

The Mean Value and the Variance can be either scalars or vectors. If either of
these is a scalar, then the block applies the same value to each element of a
sample-based output or each column of a frame-based output. Individual
elements or columns, respectively, are uncorrelated with each other.

When the Variance is a vector, its length must be the same as that of the
Initial seed vector. In this case, the covariance matrix is a diagonal matrix
whose diagonal elements come from the Variance vector. Since the
off-diagonal elements are zero, the output Gaussian random variables are
uncorrelated.

When the Variance is a square matrix, it represents the covariance matrix. Its
off-diagonal elements are the correlations between pairs of output Gaussian
random variables. In this case, the Variance matrix must be positive definite,
and it must be N-by-N, where N is the length of the Initial seed.

The probability density function of n-dimensional Gaussian noise is

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean
value vector, and the superscript T indicates matrix transpose.

Initial Seed
The Initial seed parameter initializes the random number generator that the
Gaussian Noise Generator block uses to add noise to the input signal. For best
results, the Initial seed should be a prime number greater than 30. Also, if
there are other blocks in a model that have an Initial seed parameter, you
should choose different initial seeds for all such blocks.

You can choose seeds for the Gaussian Noise Generator block using the
Communications Blockset’s randseed function. At the MATLAB prompt, type
the command

f x() 2π()ndet K()

1
2
---–

x µ–()T– K 1– x µ–() 2⁄()exp=

Gaussian Noise Generator

2-246

randseed

This returns a random prime number greater than 30. Typing randseed again
produces a different prime number. If you add an integer argument, randseed
always returns the same prime for that integer. For example, randseed(5)
always returns the same answer.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

If the Initial seed parameter is a vector, then its length becomes the number
of columns in a frame-based output or the number of elements in a
sample-based vector output. In this case, the shape (row or column) of the
Initial seed parameter becomes the shape of a sample-based two-dimensional
output signal. If the Initial seed parameter is a scalar but either the Mean
value or Variance parameter is a vector, then the vector length determines the
output attributes mentioned above.

Gaussian Noise Generator

2-247

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Mean value

The mean value of the random variable output.

Variance
The covariance among the output random variables.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Gaussian Noise Generator

2-248

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Random Source (DSP Blockset), AWGN Channel, rand (built-in MATLAB
function), randseed

General Block Deinterleaver

2-249

2General Block DeinterleaverPurpose Restore ordering of the symbols in the input vector

Library Block sublibrary of Interleaving

Description The General Block Deinterleaver block rearranges the elements of its input
vector without repeating or omitting any elements. The input can be real or
complex. If the input contains N elements, then the Elements parameter is a
vector of length N that indicates the indices, in order, of the output elements
that came from the input vector. That is, for each integer k between 1 and N,

Output(Elements(k)) = Input(k)

The Elements parameter must contain unique integers between 1 and N.

If the input is frame-based, then both it and the Elements parameter must be
column vectors.

To use this block as an inverse of the General Block Interleaver block, use the
same Elements parameter in both blocks. In that case, the two blocks are
inverses in the sense that applying the General Block Interleaver block
followed by the General Block Deinterleaver block leaves data unchanged.

Dialog Box

Elements
A vector of length N that lists the indices of the output elements that came
from the input vector.

Examples This example reverses the operation in the example on the General Block
Interleaver block reference page. If Elements is [4,1,3,2] and the input to the
General Block Deinterleaver block is [1;40;59;32], then the output of the
General Block Deinterleaver block is [40;32;59;1].

General Block Deinterleaver

2-250

Pair Block General Block Interleaver

See Also perms (MATLAB function)

General Block Interleaver

2-251

2General Block InterleaverPurpose Reorder the symbols in the input vector

Library Block sublibrary of Interleaving

Description The General Block Interleaver block rearranges the elements of its input vector
without repeating or omitting any elements. The input can be real or complex.
If the input contains N elements, then the Elements parameter is a vector of
length N that indicates the indices, in order, of the input elements that form
the length-N output vector; that is,

Output(k) = Input(Elements(k))

for each integer k between 1 and N. The contents of Elements must be integers
between 1 and N, and must have no repetitions.

If the input is frame-based, then both it and the Elements parameter must be
column vectors.

Dialog Box

Elements
A vector of length N that lists the indices of the input elements that form
the output vector.

Examples If Elements is [4,1,3,2] and the input vector is [40;32;59;1], then the
output vector is [1;40;59;32]. Notice that all of these vectors have the same
length and that the vector Elements is a permutation of the vector [1:4].

Pair Block General Block Deinterleaver

See Also perms (MATLAB function)

General CRC Generator

2-252

2General CRC GeneratorPurpose Generate cyclic redundancy code (CRC) bits according to the generator
polynomial and append them to the input data frames.

Library CRC sublibrary of Error Correction and Detection

Description The General CRC Generator block generates cyclic redundancy code (CRC) bits
for each input data frame and appends them to the end of the frame. You
specify the generator polynomial for the CRC algorithm by the Generator
polynomial parameter in the block’s mask. You represent the polynomial in
either of two ways:

• As a binary row vector containing the coefficients in descending order of
powers. For example, the vector [1 1 0 1] represents the polynomial x3 + x2

+ 1.

• As an integer row vector containing the powers of nonzero terms in the
polynomial, in descending order. For example, the vector [3 2 0] represents
the polynomial x3 + x2 + 1.

For a more detailed description of the CRC algorithm, see the section “Cyclic
Redundancy Check Coding.”

You specify the initial state of the internal shift register by the Initial states
parameter in block’s mask. The Initial states parameter is either a scalar or a
binary row vector of length equal to the degree of the generator polynomial. A
scalar value is expanded to a row vector of length equal to the degree of the
generator polynomial. For example, the default initial state of [0] is expanded
to a row vector of all zeros.

You specify the number of checksums that the block calculates for each input
frame by the Checksums per frame parameter. The Checksums per frame
value must divide the size of the input frame. If the value of Checksums per
frame is k, the block does the following:

1 Divides each input frame into k subframes of equal size

2 Prefixes the Initial states vector to each of the k subframes

3 Applies the CRC algorithm to each augmented subframe

4 Appends the resulting checksums at the end of each subframe

5 Outputs concatenated subframes

General CRC Generator

2-253

If the size of the input frame is m and the degree of the generator polynomial
is r, the output frame has size m + k*r.

For example, suppose the size of the input frame is 10, the degree of the
generator polynomial is 3, Initial states is set to [0], and Checksums per
frame is set to 2. The block divides each input frame into two subframes of size
5 and appends a checksum of size 3 to each subframe, as shown in the following
figure. The initial states are not shown in this example, because an initial state
of [0] does not affect the output of the CRC algorithm. The output frame then
has size 5 + 3 + 5 + 3 = 16.

Signal Attributes
The General CRC Generator block has one input port and one output port. Both
ports allow only frame-based binary column vectors.

1
0
0
1
0
1
1
1
0
0

1
0
0
1
0

1
1
0

1
1
1
0
0

1
0
0

1
0
0
1
0
1
1
0
1
1
1
0
0
1
0
0

First half of message word

First checksum

Second half of message word

Second checksum

Transmitted codeword

Message word

General CRC Generator

2-254

Dialog Box

Generator polynomial
A binary or integer row vector specifying the generator polynomial, in
descending order of powers.

Initial states
Binary scalar or a binary row vector of length equal to the degree of the
generator polynomial, specifying the initial state of the internal shift
register.

Checksums per frame
Positive integer specifying the number of checksums the block calculates
for each input frame.

Pair Block General CRC Syndrome Detector

See Also CRC-N Generator, CRC-N Syndrome Detector

General CRC Syndrome Detector

2-255

2General CRC Syndrome DetectorPurpose Detect errors in the input data frames according to the generator polynomial

Library CRC sublibrary of Error Correction and Detection

Description The General CRC Syndrome Detector block receives a message word and
removes the checksum. The block then calculates a new checksum and
compares the received checksum with the new checksum. The block has two
outputs. The first output is the message word with the checksum removed. The
second output is a Boolean error flag, which is 0 if the received checksum
agrees with the new checksum, and 1 otherwise. For a more detailed
description of the CRC algorithm, see the section “Cyclic Redundancy Check
Coding.”

The block’s parameter settings should agree with those in the General CRC
Generator block.

You specify the generator polynomial for the CRC algorithm by the Generator
polynomial parameter in the block’s mask. You represent the polynomial in
either of two ways:

• As a binary row vector containing the coefficients in descending order of
powers. For example, the vector [1 1 0 1] represents the polynomial x3 + x2

+ 1.

• As an integer row vector containing the powers of nonzero terms in the
polynomial, in descending order. For example, the vector [3 2 0] represents
the polynomial x3 + x2 + 1.

You specify the initial state of the internal shift register by the Initial states
parameter in the block’s mask. The Initial states parameter is either a scalar
or a binary row vector of length equal to the degree of the generator polynomial.
A scalar value is expanded to a row vector of length equal to the degree of the
generator polynomial. For example, the default initial state of [0] is expanded
to a row vector of all zeros.

You specify the number of checksums the block calculates for each frame by the
Checksums per frame parameter. The parameter equals the size of the second
output. If the Checksums per frame value is k, the size of the input frame is
n, and the degree of the generator polynomial is r, then k must divide n - k*r,
which is the size of the message word.

General CRC Syndrome Detector

2-256

As an example, suppose the received codeword has size 16, the generator
polynomial has degree 3, Initial states is set to [0], and Checksums per
frame is set to 2. The block removes the two checksums of size 3, one from the
end of the first half of the received codeword, and the other from the end of the
second half of the received codeword, as shown in the following figure. The
initial states are not shown in this example, because an initial state of [0] does
not affect the output of the CRC algorithm. The block then concatenates the
two truncated halves as a single vector of size 10 and outputs this vector
through the first output port. The block outputs a 2x1 Boolean frame vector,
whose entries are 0 or 1, depending on whether the corresponding received and
new checksums agree. The following figure shows an example in which the first
checksums disagree and the second checksums agree. This indicates that an
error occurred in transmitting the first half of the codeword.

Signal Attributes
The General CRC Syndrome Detector block has one input port and two output
ports. All ports allow frame-based binary column vectors only.

1
0
0
1
0
1
1
1
0
0

1
0
0
1
0

1
0
1

1
1
1
0
0

1
0
0

1
0
0
1
0
1
0
1
1
1
1
0
0
1
0
0

First half of message word

First received checksum

Second half of message word

Second received checksum

Received code word

First output

1
1
0

1
0
0

First new checksum

Second new checksum

1

0

Second output

General CRC Syndrome Detector

2-257

Dialog Box

Generator polynomial
A binary or integer row vector specifying the generator polynomial, in
descending order of powers.

Initial states
A binary scalar or a binary row vector of length equal to the degree of the
generator polynomial, specifying the initial state of the internal shift
register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates
for each input frame.

Pair Block General CRC Generator

See Also CRC-N Generator, CRC-N Syndrome Detector

General Multiplexed Deinterleaver

2-258

2General Multiplexed DeinterleaverPurpose Restore ordering of symbols using specified-delay shift registers

Library Convolutional sublibrary of Interleaving

Description The General Multiplexed Deinterleaver block restores the original ordering of
a sequence that was interleaved using the General Multiplexed Interleaver
block.

In typical usage, the parameters in the two blocks have the same values. As a
result, the Interleaver delay parameter, V, specifies the delays for each shift
register in the corresponding interleaver, so that the delays of the
deinterleaver’s shift registers are actually max(V)-V.

The input can be either a scalar or a frame-based column vector. It can be real
or complex. The input and output signals share the same sample time.

Dialog Box

Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift register of
the corresponding interleaver. The length of this vector is the number of
shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

General Multiplexed Deinterleaver

2-259

Pair Block General Multiplexed Interleaver

See Also Convolutional Deinterleaver, Helical Deinterleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer
Academic Publishers, 1999.

General Multiplexed Interleaver

2-260

2General Multiplexed InterleaverPurpose Permute input symbols using a set of shift registers with specified delays

Library Convolutional sublibrary of Interleaving

Description The General Multiplexed Interleaver block permutes the symbols in the input
signal. Internally, it uses a set of shift registers, each with its own delay value.

The input can be either a scalar or a frame-based column vector. It can be real
or complex. The input and output signals share the same sample time.

The Interleaver delay parameter is a column vector whose entries indicate
how many symbols can fit into each shift register. The length of the vector is
the number of shift registers. (In sample-based mode, it can also be a row
vector.)

The Initial conditions parameter indicates the values that fill each shift
register at the beginning of the simulation. If Initial conditions is a scalar,
then its value fills all shift registers; if Initial conditions is a column vector,
then each entry fills the corresponding shift register. (In sample-based mode,
Initial conditions can also be a row vector.) If a given shift register has zero
delay, then the value of the corresponding entry in the Initial conditions
vector is unimportant.

Dialog Box

Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift register. The
length of this vector is the number of shift registers.

General Multiplexed Interleaver

2-261

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block General Multiplexed Deinterleaver

See Also Convolutional Interleaver, Helical Interleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer
Academic Publishers, 1999.

General QAM Demodulator Baseband

2-262

2General QAM Demodulator BasebandPurpose Demodulate QAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The General QAM Demodulator Baseband block demodulates a signal that was
modulated using quadrature amplitude modulation. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. The Signal constellation
parameter defines the constellation by listing its points in a vector of complex
numbers. The block maps the mth point in the Signal constellation vector to
the integer m-1.

The input can be either a scalar or a frame-based column vector.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Signal constellation
A real or complex vector that lists the constellation points.

General QAM Demodulator Baseband

2-263

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block General QAM Modulator Baseband

See Also Rectangular QAM Demodulator Baseband

General QAM Demodulator Passband

2-264

2General QAM Demodulator PassbandPurpose Demodulate QAM-modulated data

Library AM, in Digital Passband sublibrary of Modulation

Description The General QAM Demodulator Passband block demodulates a signal that was
modulated using the pulse amplitude phase shift keying method. The input is
a passband representation of the modulated signal.

The input must be a sample-based scalar. Furthermore, it must be a
discrete-time complex signal.

The Signal constellation parameter defines the constellation by listing its
points in a vector of complex numbers.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

General QAM Demodulator Passband

2-265

Dialog Box

Signal constellation
A real or complex vector that lists the constellation points.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time
The sample time of the input signal.

General QAM Demodulator Passband

2-266

Pair Block General QAM Modulator Passband

See Also General QAM Demodulator Baseband

General QAM Modulator Baseband

2-267

2General QAM Modulator BasebandPurpose Modulate using quadrature amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The General QAM Modulator Baseband block modulates using quadrature
amplitude modulation. The output is a baseband representation of the
modulated signal.

The Signal constellation parameter defines the constellation by listing its
points in a length-M vector of complex numbers. The input signal values must
be integers between 0 and M-1. The block maps an input integer m to the
(m+1)st value in the Signal constellation vector.

The input can be either a scalar or a frame-based column vector.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Signal constellation
A real or complex vector that lists the constellation points.

General QAM Modulator Baseband

2-268

Samples per symbol
The number of output samples that the block produces for each input
integer.

Pair Block General QAM Demodulator Baseband

See Also Rectangular QAM Modulator Baseband

General QAM Modulator Passband

2-269

2General QAM Modulator PassbandPurpose Modulate using the pulse amplitude modulation phase shift keying method

Library AM, in Digital Passband sublibrary of Modulation

Description The General QAM Modulator Passband block modulates using the pulse
amplitude modulation phase shift keying method. The output is a passband
representation of the modulated signal.

The Signal constellation parameter defines the constellation by listing its
points in a length-M vector of complex numbers. The input signal values must
be integers between 0 and M-1. The block maps an input integer m to the
(m+1)st value in the Signal constellation vector, and then converts these
mapped values to a passband output signal.

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

General QAM Modulator Passband

2-270

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

Signal constellation
A real or complex vector that lists the constellation points.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

General QAM Modulator Passband

2-271

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block General QAM Demodulator Passband

See Also General QAM Modulator Baseband

GMSK Demodulator Baseband

2-272

2GMSK Demodulator BasebandPurpose Demodulate GMSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The GMSK Demodulator Baseband block demodulates a signal that was
modulated using the Gaussian minimum shift keying method. The input is a
baseband representation of the modulated signal.

The BT product, Pulse length, Symbol prehistory, and Phase offset
parameters are as described on the reference page for the GMSK Modulator
Baseband block.

Traceback Length and Output Delays
Internally, this block creates a trellis description of the modulation scheme and
uses the Viterbi algorithm. The Traceback length parameter, D, in this block
is the number of trellis branches used to construct each traceback path. D
influences the output delay, which is the number of zero symbols that precede
the first meaningful demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1 zero
symbols.

• If the input signal is frame-based, then the delay consists of D zero symbols.

Inputs and Outputs
The input can be either a scalar or a frame-based column vector. If the Output
type parameter is set to Integer, then the block produces values of 1 and -1. If
the Output type parameter is set to Bit, then the block produces values of 0
and 1.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

GMSK Demodulator Baseband

2-273

Dialog Box

Output type
Determines whether the output consists of bipolar or binary values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

GMSK Demodulator Baseband

2-274

Samples per symbol
The number of input samples that represent each modulated symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block GMSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

GMSK Demodulator Passband

2-275

2GMSK Demodulator PassbandPurpose Demodulate GMSK-modulated data

Library CPM, in Digital Passband sublibrary of Modulation

Description The GMSK Demodulator Passband block demodulates a signal that was
modulated using the Gaussian minimum shift keying method. The input is a
passband representation of the modulated signal.

This block converts the input to an equivalent baseband representation using
downconversion and then FIR decimation. The block uses the baseband
equivalent block, GMSK Demodulator Baseband, for internal computations.
The following parameters in this block are the same as those of the baseband
equivalent block:

• Output type
• BT product
• Pulse length
• Symbol prehistory
• Traceback length

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

GMSK Demodulator Passband

2-276

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The GMSK Demodulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

Dialog Box

GMSK Demodulator Passband

2-277

Output type
Determines whether the output consists of bipolar or binary values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the simulation.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time (s)
The sample time of the input signal.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block GMSK Modulator Passband

See Also GMSK Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

GMSK Modulator Baseband

2-278

2GMSK Modulator BasebandPurpose Modulate using the Gaussian minimum shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The GMSK Modulator Baseband block modulates using the Gaussian
minimum shift keying method. The output is a baseband representation of the
modulated signal.

The BT product parameter represents bandwidth multiplied by time. This
parameter is a nonnegative scalar. It is used to reduce the bandwidth at the
expense of increased intersymbol interference. The Pulse length parameter
measures the length of the Gaussian pulse shape, in symbol intervals. For the
exact definitions of the pulse shape, see the work by Anderson, Aulin, and
Sundberg listed in “References” on page 2-280.

The Symbol prehistory parameter is a scalar or vector that specifies the data
symbols used before the start of the simulation, in reverse chronological order.
If it is a vector, then its length must be one less than the Pulse length
parameter.

In this block, a symbol of 1 causes a phase shift of π/2 radians. The Phase offset
parameter is the initial phase of the output waveform, measured in radians.

Input Attributes
The input can be either a scalar or a frame-based column vector. If the Input
type parameter is set to Integer, then the block accepts values of 1 and -1. If
the Input type parameter is set to Bit, then the block accepts values of 0 and 1.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

GMSK Modulator Baseband

2-279

Dialog Box

Input type
Indicates whether the input consists of bipolar or binary values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in reverse
chronological order.

Phase offset (rad)
The initial phase of the output waveform.

GMSK Modulator Baseband

2-280

Samples per symbol
The number of output samples that the block produces for each integer or
bit in the input.

Pair Block GMSK Demodulator Baseband

See Also CPM Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

GMSK Modulator Passband

2-281

2GMSK Modulator PassbandPurpose Modulate using the Gaussian minimum shift keying method

Library CPM, in Digital Passband sublibrary of Modulation

Description The GMSK Modulator Passband block modulates using the Gaussian
minimum shift keying method. The output is a passband representation of the
modulated signal.

This block uses the baseband equivalent block, GMSK Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation, using FIR interpolation and then upconversion. The
following parameters in this block are the same as those of the baseband
equivalent block:

• Input type

• BT product
• Pulse length
• Symbol prehistory

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

GMSK Modulator Passband

2-282

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The GMSK Modulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

Dialog Box

GMSK Modulator Passband

2-283

Input type
Indicates whether the input consists of bipolar or binary values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in reverse
chronological order.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time (s)
The sample time of the output signal.

Pair Block GMSK Demodulator Passband

See Also GMSK Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

Gold Sequence Generator

2-284

2Gold Sequence GeneratorPurpose Generate a Gold sequence from a set of sequences

Library Sequence Generators sublibrary of Comm Sources

Description The Gold Sequence Generator block generates a Gold sequence. Gold sequences
form a large class of sequences that have good periodic cross-correlation
properties.

The Gold sequences are defined using a specified pair of sequences u and v, of
period N = 2n - 1, called a preferred pair, as defined in the following section,
“Preferred Pairs of Sequences”. The set G(u, v) of Gold sequences is defined by

where T represents the operator that shifts vectors cyclically to the left by one
place, and represents addition modulo 2. Note that contains
N + 2 sequences of period N. The Gold Sequence Generator block outputs one
of these sequences according to the block’s parameters.

Gold sequences have the property that the cross-correlation between any two,
or between shifted versions of them, takes on one of three values: -t(n), -1, or
t(n) - 2, where

The Gold Sequence Generator block uses two PN Sequence Generator blocks to
generate the preferred pair of sequences, and then XORs these sequences to
produce the output sequence, as shown in the following diagram.

G u v,() u v u v⊕ u Tv⊕ u T2v⊕ … u TN 1– v⊕, , , , , ,{ }=

 ⊕ G u v,()

t n() 1 2

n 1+
2

n odd,+

1 2

n 2+
2

n even,+⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

Gold Sequence Generator

2-285

You can specify the preferred pair by the Preferred polynomial [1] and
Preferred polynomial [2] parameters in the mask for the Gold Sequence
Generator block. These polynomials, both of which must have degree n,
describe the shift registers that the PN Sequence Generator blocks use to
generate their output. For more details on how these sequences are generated,
see the reference page for the PN Sequence Generator block. You can specify
the preferred polynomials using either of the following formats:

• A vector that lists the coefficients of the polynomial in descending order of
powers. The first and last entries must be 1. Note that the length of this
vector is one more than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, the vectors [5 2 0] and [1 0 0 1 0 1] both represent the
polynomial z5 + z2 + 1.

The following table provides a short list of preferred pairs.

n N Preferred Polynomial[1] Preferred Polynomial[2]

5 31 [5 2 0] [5 4 3 2 0]

6 63 [6 1 0] [6 5 2 1 0]

7 127 [7 3 0] [7 3 2 1 0]

9 511 [9 4 0] [9 6 4 3 0]

Gold Sequence Generator

2-286

The Initial states[1] and Initial states[2] parameters are vectors specifying
the initial values of the registers corresponding to Preferred polynomial [1]
and Preferred polynomial [2], respectively. These parameters must satisfy
these criteria:

• All elements of the Initial states[1] and Initial states[2] vectors must be
binary numbers.

• The length of the Initial states[1] vector must equal the degree of the
Preferred polynomial[1], and the length of the Initial states[2] vector must
equal the degree of the Preferred polynomial[2].

Note At least one element of the Initial states vectors must be nonzero in
order for the block to generate a nonzero sequence. That is, the initial state of
at least one of the registers must be nonzero.

The Sequence index parameter specifies which sequence in the set G(u, v) of
Gold sequences the block outputs. The range of Sequence index is

. The correspondence between Sequence index and
the output sequence is given in the following table.

10 1023 [10 3 0] [10 8 3 2 0]

11 2047 [11 2 0] [11 8 5 2 0]

Sequence Index Output Sequence

-2 u

-1 v

0

1

2

n N Preferred Polynomial[1] Preferred Polynomial[2]

2– 1– 0 1 2 … 2n 2–, , , , , ,[]

u v⊕

u Tv⊕

u T2v⊕

Gold Sequence Generator

2-287

You can shift the starting point of the Gold sequence with the Shift parameter,
which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register
to the initial state by selecting the Reset on nonzero input check box. This
creates an input port for the external signal in the Gold Sequence Generator
block. The way the block resets the internal shift register depends on whether
its output signal and the reset signal are sample-based or frame-based. The
following example demonstrates the possible alternatives. See “Example:
Resetting a Signal” on page 2-460 for an example.

Preferred Pairs of Sequences
The requirements for a pair of sequences u, v of period to be a
preferred pair are as follows:

• n is not divisible by 4

• , where

- q is odd

- or

- v is obtained by sampling every qth symbol of u

•

Sequence Index Output Sequence

… …

2n 2– u T2n 2– v⊕

N 2n 1–=

v u q[]=

q 2k 1+= q 22k 2k– 1+=

gcd n k,() 1 n 1 mod 2≡,
2 n 2 mod 4≡,⎩

⎨
⎧

=

Gold Sequence Generator

2-288

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Preferred polynomial[1]

Vector specifying the polynomial for the first sequence of the preferred
pair.

Gold Sequence Generator

2-289

Initial states[1]
Vector of initial states of the shift register for the first sequence of the
preferred pair.

Preferred polynomial[2]
Vector specifying the polynomial for the second sequence of the preferred
pair.

Initial states[2]
Vector of initial states of the shift register for the second sequence of the
preferred pair.

Sequence index
Integer specifying the index of the output sequence from the set of
sequences.

Shift
Integer scalar that determines the offset of the Gold sequence from the
initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift
registers to the original values of the Initial states parameter

See Also Kasami Sequence Generator, PN Sequence Generator

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

Gold Sequence Generator

2-290

[2] Gold, R., “Maximal Recursive Sequences with 3-valued Recursive
Cross-Correlation Functions,” IEEE Trans. Infor. Theory, Jan., 1968, pp.
154-156.

[3] Gold, R., “Optimal Binary Sequences for Spread Spectrum Multiplexing,
IEEE Trans. Infor. Theory, Oct., 1967, pp. 619-621.

[4] Sarwate, D.V., and M.B. Pursley, “Crosscorrelation Properties of
Pseudorandom and Related Sequences,” Proc. IEEE, Vol. 68, No. 5, May, 1980,
pp. 583-619.

Hadamard Code Generator

2-291

2Hadamard Code GeneratorPurpose Generate a Hadamard code from an orthogonal set of codes

Library Sequence Generators sublibrary of Comm Sources

Description The Hadamard Code Generator block generates a Hadamard code from a
Hadamard matrix, whose rows form an orthogonal set of codes. Orthogonal
codes can be used for spreading in communication systems in which the
receiver is perfectly synchronized with the transmitter. In these systems, the
despreading operation is ideal, as the codes are decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix.
Hadamard matrices are square matrices whose entries are +1 or -1, and whose
rows and columns are mutually orthogonal. If N is a nonnegative power of 2,
the Hadamard matrix, denoted , is defined recursively as follows.

The Hadamard matrix has the property that

where is the identity matrix.

The Hadamard Code Generator block outputs a row of . The output is
bipolar. You specify the length of the code, N, by the Code length parameter
in the block’s mask. The Code length must be a power of 2. You specify the
index of the row of the Hadamard matrix, which is an integer in the range [0,
1, ... , N - 1], where N is the Code length, by the Code index parameter.

N N× HN

H1 1=

H2N
HN HN

HN HN–
=

N N×

HNHN
T NIN=

IN N N×

HN

Hadamard Code Generator

2-292

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Code length

A positive integer that is a power of two specifying the length of the
Hadamard code.

Code index
An integer between 0 and N - 1, where N is the Code length, specifying a
row of the Hadamard matrix.

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

Hadamard Code Generator

2-293

See Also OVSF Code Generator, Walsh Code Generator

Hamming Decoder

2-294

2Hamming DecoderPurpose Decode a Hamming code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Hamming Decoder block recovers a binary message vector from a binary
Hamming codeword vector. For proper decoding, the parameter values in this
block should match those in the corresponding Hamming Encoder block.

If the Hamming code has message length K and codeword length N, then N
must have the form 2M-1 for some integer M greater than or equal to 3. Also, K
must equal N-M.

The input must contain exactly N elements. If it is frame-based, then it must
be a column vector. The output is a vector of length K.

The coding scheme uses elements of the finite field GF(2M). You can either
specify the primitive polynomial that the algorithm should use, or you can rely
on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first
and second mask parameters, respectively. The algorithm uses gfprimdf(M)
as the primitive polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a
binary vector as the second parameter. The vector represents the primitive
polynomial by listing its coefficients in order of ascending exponents. You can
create primitive polynomials using the gfprimfd function in the
Communications Toolbox.

Hamming Decoder

2-295

Dialog Box

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the output vector length; or a
binary vector that represents a primitive polynomial for GF(2M).

Pair Block Hamming Encoder

See Also hammgen (Communications Toolbox)

Hamming Encoder

2-296

2Hamming EncoderPurpose Create a Hamming code from binary vector data

Library Block sublibrary of Channel Coding

Description The Hamming Encoder block creates a Hamming code with message length K
and codeword length N. The number N must have the form 2M-1, where M is
an integer greater than or equal to 3. Then K equals N-M.

The input must contain exactly K elements. If it is frame-based, then it must
be a column vector. The output is a vector of length N.

The coding scheme uses elements of the finite field GF(2M). You can either
specify the primitive polynomial that the algorithm should use, or you can rely
on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first
and second mask parameters, respectively. The algorithm uses gfprimdf(M)
as the primitive polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a
binary vector as the second parameter. The vector represents the primitive
polynomial by listing its coefficients in order of ascending exponents. You can
create primitive polynomials using the gfprimfd function in the
Communications Toolbox.

Dialog Box

Codeword length N
The codeword length, which is also the output vector length.

Hamming Encoder

2-297

Message length K, or M-degree primitive polynomial
Either the message length, which is also the input vector length; or a
binary vector that represents a primitive polynomial for GF(2M).

Pair Block Hamming Decoder

See Also hammgen (Communications Toolbox)

Helical Deinterleaver

2-298

2Helical DeinterleaverPurpose Restore ordering of symbols permuted by a helical interleaver

Library Convolutional sublibrary of Interleaving

Description The Helical Deinterleaver block permutes the symbols in the input signal by
placing them in an array row by row and then selecting groups in a helical
fashion to send to the output port.

The block uses the array internally for its computations. If C is the Number of
columns in helical array parameter, then the array has C columns and
unlimited rows. If N is the Group size parameter, then the block accepts an
input of length C*N at each time step and inserts them into the next N rows of
the array. The block also places the Initial condition parameter into certain
positions in the top few rows of the array (not only to accommodate the helical
pattern but also to preserve the vector indices of symbols that pass through the
Helical Interleaver and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from the
beginning of the simulation, the block selects the kth output group in the array
from column k mod C. The selection is helical because of the reduction modulo
C and because the first symbol in the kth group is in row 1+(k-1)*s, where s is
the Helical array step size parameter.

The number of elements of the input vector must be C times N. If the input is
frame-based, then it must be a column vector.

Delay of Interleaver-Deinterleaver Pair
After processing a message with the Helical Interleaver block and the Helical
Deinterleaver block, the deinterleaved data lags the original message by

samples. Before this delay elapses, the deinterleaver output is either the
Initial condition parameter in the Helical Deinterleaver block or the Initial
condition parameter in the Helical Interleaver block.

If your model incurs an additional delay between the interleaver output and
the deinterleaver input, then the restored sequence lags the original sequence
by the sum of the additional delay and the amount in the formula above. For
proper synchronization, the delay between the interleaver and deinterleaver

CN s C 1–()
N

Helical Deinterleaver

2-299

must be m*C*N for some nonnegative integer m. You can use the Integer Delay
block in the DSP Blockset to adjust delays manually, if necessary.

Dialog Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of symbols. The input width is C times N.

Helical array step size
The number of rows of separation between consecutive output groups as
the block selects them from their respective columns of the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Pair Block Helical Interleaver

See Also General Multiplexed Deinterleaver

Helical Deinterleaver

2-300

References [1] Berlekamp, E. R. and P. Tong. “Improved Interleavers for Algebraic Block
Codes.” U. S. Patent 4559625, Dec. 17, 1985.

Helical Interleaver

2-301

2Helical InterleaverPurpose Permute input symbols using a helical array

Library Convolutional sublibrary of Interleaving

Description The Helical Interleaver block permutes the symbols in the input signal by
placing them in an array in a helical fashion and then sending rows of the array
to the output port.

The block uses the array internally for its computations. If C is the Number of
columns in helical array parameter, then the array has C columns and
unlimited rows. If N is the Group size parameter, then the block accepts an
input of length C*N at each time step and partitions the input into consecutive
groups of N symbols. Counting from the beginning of the simulation, the block
places the kth group in the array along column k mod C. The placement is
helical because of the reduction modulo C and because the first symbol in the
kth group is in row 1+(k-1)*s, where s is the Helical array step size parameter.
Positions in the array that do not contain input symbols have default contents
specified by the Initial condition parameter.

The block sends C*N symbols from the array to the output port by reading the
next N rows sequentially. At a given time step, the output symbols might be
the Initial condition parameter value, symbols from that time step’s input
vector, or symbols left in the array from a previous time step.

The number of elements of the input vector must be C times N. If the input is
frame-based, then it must be a column vector.

Helical Interleaver

2-302

Dialog Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of input symbols. The input width is C times N.

Helical array step size
The number of rows of separation between consecutive input groups in
their respective columns of the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Examples Suppose that C = 3, N = 2, the Helical array step size parameter is 1, and the
Initial condition parameter is -1. After receiving inputs of [1:6]', [7:12]',
and [13:19]', the block’s internal array looks like the schematic below. The
coloring of the inputs and the array indicate how the input symbols are placed
within the array. The outputs at the first three time steps are
[1; -1; -1; 2; 3; -1], [7; 4; 5; 8; 9; 6], and
[13; 10; 11; 14; 15; 12]. (The outputs are not color-coded in the
schematic.)

Helical Interleaver

2-303

Pair Block Helical Deinterleaver

See Also General Multiplexed Interleaver

References [1] Berlekamp, E. R. and P. Tong. “Improved Interleavers for Algebraic Block
Codes.” U. S. Patent 4559625, Dec. 17, 1985.

1 -1 -1

2 3 -1

7 4 5

8 9 6

13 10 11

14 15 12

16 17

... 18

1
2
3
4
5
6

Inputs

Block’s Internal Array

Outputs from successive
rows of array

7
8
9
10
11
12

13
14
15
16
17
18

1
-1
-1
2
3
-1

7
4
5
8
9
6

13
10
11
14
15
12

Insert Zero

2-304

2Insert ZeroPurpose Distribute input elements in output vector

Library Sequence Operations, in Basic Comm Functions

Description The Insert Zero block constructs an output vector by inserting zeros among the
elements of the input vector. The input can be real or complex. The block
determines where to place the zeros by using the Insert zero vector
parameter. The Insert zero vector parameter is a binary vector whose
elements are arranged so that:

• Each 1 indicates that the block should place the next element of the input in
the output vector

• Each 0 indicates that the block should place a 0 in the output vector

If the input signal is sample-based, then the input vector length must equal the
number of 1s in the Insert zero vector parameter.

To implement punctured coding using the Puncture and Insert Zero blocks, you
should use the same vector for the Insert zero vector parameter in this block
and for the Puncture vector parameter in the Puncture block.

Frame-Based Processing
If the input signal is frame-based, then both it and the Insert zero vector
parameter must be column vectors. The number of 1s in the Insert zero vector
parameter must divide the input vector length. If the input vector length is
greater than the number of 1s in the Insert zero vector parameter, then the
block repeats the insertion pattern until it has placed all input elements in the
output vector.

Insert Zero

2-305

Dialog Box

Insert zero vector
A binary vector whose pattern of 0s and 1s indicates where the block should
place either 0s or input vector elements, respectively, in the output vector.

Examples If the Insert zero vector parameter is the six-element vector [1,0,1,1,1,0],
then the block inserts zeros after the first and last elements of each consecutive
grouping of four input elements. It considers groups of four elements because
the Insert zero vector parameter has four 1s.

The diagram below depicts the block’s operation using this Insert zero vector
parameter. Notice that the insertion pattern applies twice.

Compare this example with that on the reference page for the Puncture block.

Group of 4 Group of 4

[1 3 4 5 7 9 10 11]

= Inserted zero

= Entry from input vector

Shading Key for Output Vector

[1 0 3 4 5 0 7 0 9 10 11 0]

Insert Zero

2-306

See Also Puncture

Integer-Input RS Encoder

2-307

2Integer-Input RS EncoderPurpose Create a Reed-Solomon code from integer vector data

Library Block sublibrary of Channel Coding

Description The Integer-Input RS Encoder block creates a Reed-Solomon code with
message length K and codeword length N. You specify both N and K directly in
the block mask. The symbols for the code are integers between 0 and 2M-1,
which represent elements of the finite field GF(2M). Restrictions on M and N
are described in the section “Restrictions on M and the Codeword Length N”
below. The difference N - K must be an even integer.

The input and output are integer-valued signals that represent messages and
codewords, respectively. The input must be a frame-based column vector whose
length is an integer multiple of K. The output is a frame-based column vector
whose length is the same integer multiple of N. For more information on
representing data for Reed-Solomon codes, see the section “Integer Format
(Reed-Solomon only).”

The default value of M is the smallest integer that is greater than or equal to
log2(N+1), that is, ceil(log2(N+1)). You can change the value of M from the
default by specifying the primitive polynomial for GF(2M), as described in the
section “Specifying the Primitive Polynomial” following. If N is less than 2M-1,
the block uses a shortened Reed-Solomon code.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword.

Specifying the Primitive Polynomial
You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first
check the box next to Specify primitive polynomial. Then, in the Primitive
polynomial field, enter a binary row vector that represents a primitive
polynomial over GF(2) of degree M, in descending order of powers. For example,
to specify the polynomial , enter the vector [1 0 1 1].

If you do not select the box next to Specify primitive polynomial, the block
uses the default primitive polynomial of degree M = ceil(log2(N+1)). You can
display the default polynomial by entering primpoly(ceil(log2(N+1))) at the
MATLAB prompt.

x3 x 1+ +

Integer-Input RS Encoder

2-308

Restrictions on M and the Codeword Length N
The restrictions on the degree M of the primitive polynomial and the codeword
length N are as follows:

• If you do not select the box next to Specify primitive polynomial, N must
lie in the range .

• If you do select the box next to Specify primitive polynomial, N must lie in
the range and M must lie in the range .

Specifying the Generator Polynomial
You can specify the generator polynomial for the Reed-Solomon code. To do so,
first select the box next to Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose entries are
between 0 and 2M-1. The vector represents a polynomial, in descending order
of powers, whose coefficients are elements of GF(2M) represented in integer
format. See the section “Integer Format (Reed-Solomon only)” for more
information about integer format. The generator polynomial must be equal to
a polynomial with a factored form

where is the primitive element of the Galois field over which the input
message is defined, and b is an integer.

If you do not select the box next to Specify generator polynomial, the block
uses the default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by typing
rsgenpoly(N1,K1), where N1 = 2M-1 and K1 = K+(N1-N), at the MATLAB
prompt, if you are using the default primitive polynomial. If the Specify
primitive polynomial box is selected, and you specify the primitive
polynomial specified as poly, the default generator polynomial is
rsgenpoly(N1,K1,poly).

Examples Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a vector of length 5
whose entries are integers between 0 and 7. A corresponding codeword is a
vector of length 7 whose entries are integers between 0 and 7. The following
figure illustrates possible input and output signals to this block when
Codeword length N is set to 7, Message length K is set to 5, and the default
primitive and generator polynomials are used.

3 N 216 1–< <

3 N≤ 2M 1–< 3 M 16≤ ≤

g x() x αb+() x αb 1++() x αb 2++()… x αb N K– 1–++()=

α

Integer-Input RS Encoder

2-309

Dialog Box

Codeword length N
The codeword length.

Message length K
The message length.

2
3
5
2
0
1
4

t=0t=1

code

6
7
4
0
4
5
2

t=0t=1

message

2
3
5
2
0

6
7
4
0
4

Integer-Input RS Encoder

2-310

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial as a
binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending
order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial as an
integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of powers.

Pair Block Integer-Output RS Decoder

See Also Binary-Input RS Encoder

Integer-Output RS Decoder

2-311

2Integer-Output RS DecoderPurpose Decode a Reed-Solomon code to recover integer vector data

Library Block sublibrary of Channel Coding

Description The Integer-Output RS Decoder block recovers a message vector from a
Reed-Solomon codeword vector. For proper decoding, the parameter values in
this block should match those in the corresponding Integer-Input RS Encoder
block.

The Reed-Solomon code has message length K and codeword length N. You
specify both N and K directly in the block mask. The symbols for the code are
integers between 0 and 2M-1, which represent elements of the finite field
GF(2M). Restrictions on M and N are described in the section “Restrictions on
M and the Codeword Length N” following. The difference N - K must be an even
integer.

The input and output are integer-valued signals that represent messages and
codewords, respectively. The input must be a frame-based column vector whose
length is an integer multiple of K. The output is a frame-based column vector
whose length is the same integer multiple of N. For more information on
representing data for Reed-Solomon codes, see the section “Integer Format
(Reed-Solomon only).”

The default value of M is the smallest integer that is greater than or equal to
log2(N+1), that is, ceil(log2(N+1)). You can change the value of M from the
default by specifying the primitive polynomial for GF(2M), as described in the
section “Specifying the Primitive Polynomial” below. If N is less than 2M-1, the
block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon code, as
described in the section “Specifying the Generator Polynomial” on page 2-308.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword.

The second output is the number of errors detected during decoding of the
codeword. A -1 indicates that the block detected more errors than it could
correct using the coding scheme. An (N,K) Reed-Solomon code can correct up to
floor((N-K)/2) symbol errors (not bit errors) in each codeword.

Integer-Output RS Decoder

2-312

You can disable the second output by clearing the box next to Output port for
number of corrected errors. This removes the block’s second output port.

The sample times of the input and output signals are equal.

Dialog Box

Codeword length N
The codeword length.

Message length K
The message length.

Integer-Output RS Decoder

2-313

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial as a
binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending
order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial as an
integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of powers.

Output port for number of corrected errors
When you select this box, the block outputs the number of corrected errors
in each word through a second output port.

Pair Block Integer-Input RS Encoder

See Also Binary-Output RS Decoder

Integer to Bit Converter

2-314

2Integer to Bit ConverterPurpose Map a vector of integers to a vector of bits

Library Utility Functions

Description The Integer to Bit Converter block maps each integer in the input vector to a
group of bits in the output vector. If M is the Number of bits per integer
parameter, then the input integers must be between 0 and 2M-1. The block
maps each integer to a group of M bits, using the first bit as the most significant
bit. As a result, the output vector length is M times the input vector length.

The input can be either a scalar or a frame-based column vector.

Dialog Box

Number of bits per integer
The number of bits the block uses to represent each integer of the input.
This parameter must be an integer between 1 and 31.

Examples If the input is [7; 13] and the Number of bits per integer parameter is 4, then
the output is [0; 1; 1; 1; 1; 1; 0; 1]. The first group of four bits (0, 1, 1, 1)
represents 7 and the second group of four bits (1, 1, 0, 1) represents 13. Notice
that the output length is four times the input length.

Pair Block Bit to Integer Converter

Integrate and Dump

2-315

2Integrate and DumpPurpose Integrate, resetting to zero periodically and reducing by a modulus

Library Integrators, in Basic Comm Functions

Description The Integrate and Dump block integrates the input signal in discrete time,
resets to zero according to a fixed schedule, and reduces modulo the Absolute
value bound parameter. If the Absolute value bound parameter is K, then
the block output is strictly between -K and K.

The reset times are the positive integral multiples of the Integration period
parameter. At each reset time, the block performs its final integration step,
sends the result to the output port, and then clears its internal state for the
next time step.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. The block processes each vector element independently.

This block uses the Forward Euler integration method.

Dialog Box

Absolute value bound
The modulus by which the integration result is reduced. This parameter
must be positive.

Integrate and Dump

2-316

Integration period (s)
The first reset time. This is also the time interval between resets.

Sample time
The integration sample time. This must not exceed the Integration
period.

Examples Integrate a constant signal whose value is 1 using these parameters:

• Absolute value bound = 5

• Integration period = 7

• Sample time = .5

You can use a Simulink Constant block for the input signal. The Simulink
Scope block shows the output below.

Notice that the output is 0 at time 0 and that the output never exceeds 5. Also
notice that the output at time 7.5 seconds (Integration period plus Sample
time) is the result of resetting the integrator after the previous time step and
then considering the input signal between times 7 and 7.5.

See Also Discrete Modulo Integrator, Windowed Integrator, Discrete-Time Integrator
(Simulink)

Interlacer

2-317

2InterlacerPurpose Alternately select elements from two input vectors to generate output vector

Library Sequence Operations, in Basic Comm Functions

Description The Interlacer block accepts two inputs that have the same vector size,
complexity, and sample time. It produces one output vector by alternating
elements from the first input and from the second input. As a result, the output
vector size is twice that of either input. The output vector has the same
complexity and sample time of the inputs.

The inputs can be either scalars or frame-based column vectors.

This block can be useful for combining in-phase and quadrature information
from separate vectors into a single vector.

Dialog Box

Examples If the two input vectors are frame-based with values [1; 2; 3; 4] and
[5; 6; 7; 8], then the output vector is [1; 5; 2; 6; 3; 7; 4; 8].

Pair Block Deinterlacer

See Also General Block Interleaver; Mux (Simulink)

I/Q Imbalance

2-318

2I/Q ImbalancePurpose Create a complex baseband model of the signal impairments caused by
imbalances between in-phase and quadrature receiver components

Library RF Impairments

Description The I/Q Imbalance block creates a complex baseband model of the signal
impairments caused by imbalances between in-phase and quadrature receiver
components. Typically, these are caused by differences in the physical channels
for the two components of the signal.

The I/Q Imbalance block applies amplitude and phase imbalances to the
in-phase and quadrature components of the input signal, and then combines
the results into a complex signal. The block

1 Separates the signal into its in-phase and quadrature components.

2 Applies amplitude and phase imbalances, specified by the I/Q amplitude
imbalance (dB) and I/Q phase imbalance (deg) parameters, respectively,
to both components.

3 Combines the in-phase and quadrature components into a complex signal.

4 Applies an in-phase dc offsets, specified by the I dc offset parameter, and a
quadrature offset, specified by the Q dc offset parameter, to the signal.

The block performs these operations in the subsystem shown in the following
diagram, which you can view by right-clicking the block and selecting Look
under mask:

I/Q Imbalance

2-319

The value of the I/Q amplitude imbalance (dB) parameter is divided between
the in-phase and quadrature components:

• If you enter a positive value X for the I/Q amplitude imbalance (dB), the
block applies a gain of +X/2 dB to the in-phase component and a gain of -X/2
dB to the quadrature component.

• If you enter a negative value X for the I/Q amplitude imbalance (dB), the
block applies a gain of -X/2 dB to the in-phase component and a gain of +X/2
dB to the quadrature component.

The effects of changing the block’s parameters are illustrated by the following
scatter plots of a signal modulated by 16-ary quadrature amplitude modulation
(QAM) with an average power of 0.01 watts. The usual 16-ary QAM
constellation without distortion is shown in the first scatter plot:

The following figure shows a scatter plot of an output signal, modulated by
16-ary QAM, from the I/Q block with I/Q amplitude imbalance (dB) set to 8
and all other parameters set to 0:

I/Q Imbalance

2-320

Observe that the scatter plot is stretched horizontally and compressed
vertically compared to the undistorted constellation.

If you set IQ phase imbalance (deg) to 30 and all other parameters to 0, the
scatter plot is skewed clockwise by 30 degrees, as shown in the following figure:

I/Q Imbalance

2-321

Setting the I dc offset to 0.02 and the Q dc offset to 0.04 shifts the
constellation 0.02 to the right and 0.04 up, as shown in the following figure:

I/Q Imbalance

2-322

See “Scatter Plot Examples” for a description of the model that generates this
plot.

Dialog Box

I/Q amplitude imbalance (dB)
Scalar specifying the I/Q amplitude imbalance in decibels.

I/Q phase imbalance (deg)
Scalar specifying the I/Q phase imbalance in degrees.

I dc offset
Scalar specifying the in-phase dc offset.

Q dc offset
Scalar specifying the amplitude dc offset.

See Also Memoryless Nonlinearity

Kasami Sequence Generator

2-323

2Kasami Sequence GeneratorPurpose Generate a Kasami sequence from the set of Kasami sequences

Library Sequence Generators sublibrary of Comm Sources

Description The Kasami Sequence Generator block generates a sequence from the set of
Kasami sequences. The Kasami sequences are a set of sequences that have
good cross-correlation properties.

There are two classes of Kasami sequences: the small set and the large set. The
large set contains all the sequences in the small set. Only the small set is
optimal in the sense of matching Welch’s lower bound for correlation functions.

Kasami sequences have period N = 2n - 1, where n is a nonnegative, even
integer. Let u be a binary sequence of length N, and let w be the sequence
obtained by decimating u by 2n/2 +1. The small set of Kasami sequences is
defined by the following formulas, in which T denotes the left shift operator, m
is the shift parameter for w, and denotes addition modulo 2.

Figure 2-1: Small Set of Kasami Sequences for n Even

Note that the small set contains 2n/2 sequences.

For mod(n, 4) = 2, the large set of Kasami sequences is defined as follows. Let
v be the sequence formed by decimating the sequence u by 2n/2 + 1+ 1. The large
set is defined by the following table, in which k and m are the shift parameters
for the sequences v and w, respectively.

 ⊕

KS u n m, ,()
u

u Tmw⊕

m 1–=

m 0 … 2n 2⁄ 2–, ,=
⎩
⎪
⎨
⎪
⎧

=

Kasami Sequence Generator

2-324

Figure 2-2: Large Set of Kasami Sequences for mod(n, 4) = 2

The sequences described in the first three rows of the preceding figure
correspond to the Gold sequences for mod(n, 4) = 2. See the reference page for
the Gold Sequence Generator block for a description of Gold sequences.
However, the Kasami sequences form a larger set than the Gold sequences.

The correlation functions for the sequences takes on the values
{-t(n), -s(n), -1, s(n) -2 , t(n) - 2}, where

and

Block Parameters
The Generator polynomial parameter specifies the generator polynomial,
which determines the connections in the shift register that generates the
sequence u. You can specify the Generator polynomial parameter using either
of these formats:

• A vector that lists the coefficients of the polynomial in descending order of
powers. The first and last entries must be 1. Note that the length of this
vector is one more than the degree of the generator polynomial.

KL u n k m, , ,()

u
v

u Tkv⊕

u Tmw⊕

v Tmw⊕

u Tkv Tmw⊕ ⊕

k 2–= m 1–=,
k 1–= m 1–=,

k 0 … 2n 2–, ,= m 1–=,

k 2–= m 0 … 2n 2⁄ 2–, ,=,

k 1–= m 0 … 2n 2⁄ 2–, ,=,

k 0 … 2n 2–, ,= m 0 … 2n 2⁄ 2–, ,=,
⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

=

t n() 1 2

n 2+
2

+ neven,=

s n() 1
2
--- t n() 1+()=

Kasami Sequence Generator

2-325

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial,
.

The Initial states parameter specifies the initial states of the shift register
that generates the sequence u. Initial States is a binary scalar or row vector of
length equal to the degree of the Generator polynomial. If you choose a binary
scalar, the block expands the scalar to a row vector of length equal to the degree
of the Generator polynomial, all of whose entries equal the scalar.

The Sequence index parameter specifies the shifts of the sequences v and w
used to generate the output sequence. You can specify the parameter in either
of two ways:

- To generate sequences from the small set, for n is even, you can specify the
Sequence index as an integer m. The range of m is [-1, ..., 2n/2 - 2]. The
following table describes the output sequences corresponding to Sequence
index m:

- To generate sequences from the large set, for mod (n, 4) = 2, where n is the
degree of the Generator polynomial, you can specify Sequence index as
an integer vector [k m]. In this case, the output sequence is from the large
set. The range for k is [-2, ..., 2n - 2], and the range for m is [-1, ..., 2n/2 - 2].

Sequence Index Range of Indices Output Sequence

-1 m = -1 u

m m = 0, ... , 2n/2 - 2

p z() z8 z2 1+ +=

u Tmw⊕

Kasami Sequence Generator

2-326

The following table describes the output sequences corresponding to
Sequence index [k m]:

You can shift the starting point of the Gold sequence with the Shift parameter,
which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register
to the initial state by selecting the Reset on nonzero input check box. This
creates an input port for the external signal in the Kasami Sequence Generator
block. The way the block resets the internal shift register depends on whether
its output signal and the reset signal are sample-based or frame-based. See
“Example: Resetting a Signal” on page 2-460 for an example.

Sequence Index
[k m]

Range of Indices Output Sequence

[-2 -1] k = -2, m = -1 u

[-1 -1] k = -1, m = -1 v

[k -1] k = 0, 1, ... , 2n - 2
m = -1

[-2 m] k = -2
m = 0, 1, ..., 2n/2 - 2

[-1 m] k = -1
m = 0, ... , 2n/2 - 2

[k m] k = 0, ... , 2n - 2
m = 0, ... , 2n/2 - 2

u Tkv⊕

u Tmw⊕

v Tmw⊕

u Tkv Tmw⊕ ⊕

Kasami Sequence Generator

2-327

Polynomials for Generating Kasami Sequences
The following table lists some of the polynomials that you can use to generate
the Kasami set of sequences.

n N Polynomial Set

4 15 [4 1 0] Small

6 63 [6 1 0] Large

8 255 [8 4 3 2 0] Small

10 1023 [10 3 0] Large

12 4095 [12 6 4 1 0] Small

Kasami Sequence Generator

2-328

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Generator polynomial

Binary vector specifying the generator polynomial for the sequence u.

Initial states
Binary scalar or row vector of length equal to the degree of the Generator
polynomial, which specifies the initial states of the shift register that
generates the sequence u.

Kasami Sequence Generator

2-329

Sequence index
Integer or vector specifying the shifts of the sequences v and w used to
generate the output sequence.

Shift
Integer scalar that determines the offset of the Kasami sequence from the
initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift
registers to the original values of the Initial states.

See Also Gold Sequence Generator, PN Sequence Generator

Reference [1] Peterson and Weldon, Error Correcting Codes, 2nd Ed., MIT Press,
Cambridge, MA, 1972.

[2] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[3] Sarwate, D. V. and Pursley, M.B., “Crosscorrelation Properties of
Pseudorandom and Related Sequences,” Proc. IEEE, Vol. 68, No. 5, May 1980,
pp. 583-619.

Linearized Baseband PLL

2-330

2Linearized Baseband PLL Purpose Implement a linearized version of a baseband phase-locked loop

Library Synchronization

Description The Linearized Baseband PLL block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match the
phase of an input signal. Unlike the Phase-Locked Loop block, this block uses
a baseband model method. Unlike the Baseband PLL block, which uses a
nonlinear model, this block simplifies the computations by using x to
approximate sin(x). The baseband PLL model depends on the amplitude of the
incoming signal but does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass filter
numerator and Lowpass filter denominator mask parameters. Each is a
vector that gives the respective polynomial’s coefficients in order of
descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2
in the Signal Processing Toolbox. The default filter is a Chebyshev type II
filter whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO
signal to its input using the VCO input sensitivity parameter. This
parameter, measured in Hertz per volt, is a scale factor that determines how
much the VCO shifts from its quiescent frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO

Linearized Baseband PLL

2-331

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from
the VCO’s quiescent frequency.

See Also Baseband PLL, Phase-Locked Loop

References For more information about phase-locked loops, see the works listed in
“Selected Bibliography for Synchronization” in Using the Communications
Blockset.

Matrix Deinterleaver

2-332

2Matrix DeinterleaverPurpose Permute input symbols by filling a matrix by columns and emptying it by rows

Library Block sublibrary of Interleaving

Description The Matrix Deinterleaver block performs block deinterleaving by filling a
matrix with the input symbols column by column and then sending the matrix
contents to the output port row by row. The Number of rows and Number of
columns parameters are the dimensions of the matrix that the block uses
internally for its computations.

The length of the input vector must be Number of rows times Number of
columns. If the input is frame-based, then it must be a column vector.

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Examples If the Number of rows and Number of columns parameters are 2 and 3,
respectively, then the deinterleaver uses a 2-by-3 matrix for its internal
computations. Given an input signal of [1; 2; 3; 4; 5; 6], the block
produces an output of [1; 3; 5; 2; 4; 6].

Pair Block Matrix Interleaver

Matrix Deinterleaver

2-333

See Also General Block Deinterleaver

Matrix Helical Scan Deinterleaver

2-334

2Matrix Helical Scan DeinterleaverPurpose Restore ordering of input symbols by filling a matrix along diagonals

Library Block sublibrary of Interleaving

Description The Matrix Helical Scan Deinterleaver block performs block deinterleaving by
filling a matrix with the input symbols in a helical fashion and then sending
the matrix contents to the output port row by row. The Number of rows and
Number of columns parameters are the dimensions of the matrix that the
block uses internally for its computations.

Helical fashion means that the block places input symbols along diagonals of
the matrix. The number of elements in each diagonal matches the Number of
columns parameter, after the block wraps past the edges of the matrix when
necessary. The block traverses diagonals so that the row index and column
index both increase. Each diagonal after the first one begins one row below the
first element of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the
amount by which the row index increases as the column index increases by one.
This parameter must be an integer between zero and the Number of rows
parameter. If the Array step size parameter is zero, then the block does not
deinterleave and the output is the same as the input.

The number of elements of the input vector must be the product of Number of
rows and Number of columns. If the input is frame-based, then it must be a
column vector.

Matrix Helical Scan Deinterleaver

2-335

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Array step size
The slope of the diagonals that the block writes.

Pair Block Matrix Helical Scan Interleaver

See Also General Block Deinterleaver

Matrix Helical Scan Interleaver

2-336

2Matrix Helical Scan InterleaverPurpose Permute input symbols by selecting matrix elements along diagonals

Library Block sublibrary of Interleaving

Description The Matrix Helical Scan Interleaver block performs block interleaving by
filling a matrix with the input symbols row by row and then sending the matrix
contents to the output port in a helical fashion. The Number of rows and
Number of columns parameters are the dimensions of the matrix that the
block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting
elements along diagonals of the matrix. The number of elements in each
diagonal matches the Number of columns parameter, after the block wraps
past the edges of the matrix when necessary. The block traverses diagonals so
that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the
amount by which the row index increases as the column index increases by one.
This parameter must be an integer between zero and the Number of rows
parameter. If the Array step size parameter is zero, then the block does not
interleave and the output is the same as the input.

The number of elements of the input vector must be the product of Number of
rows and Number of columns. If the input is frame-based, then it must be a
column vector.

Matrix Helical Scan Interleaver

2-337

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Array step size
The slope of the diagonals that the block reads.

Examples If the Number of rows and Number of columns parameters are 6 and 4,
respectively, then the interleaver uses a 6-by-4 matrix for its internal
computations. If the Array step size parameter is 1, then the diagonals are as
shown in the figure below. Positions with the same color form part of the same
diagonal, and diagonals with darker colors precede those with lighter colors in
the output signal.

Given an input signal of [1:24]', the block produces an output of

[1; 6; 11; 16; 5; 10; 15; 20; 9; 14; 19; 24; 13; 18; 23;...
4; 17; 22; 3; 8; 21; 2; 7; 12]

Matrix Helical Scan Interleaver

2-338

Pair Block Matrix Helical Scan Deinterleaver

See Also General Block Interleaver

Block’s Internal Array

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

[1, 6, 11, 16,...
5, 10, 15, 20,...
9, 14, 19, 24,...
13, 18, 23, 4,...
17, 22, 3, 8,...
21, 2, 7, 12]'

[1:24]'

Matrix Interleaver

2-339

2Matrix InterleaverPurpose Permute input symbols by filling a matrix by rows and emptying it by columns

Library Block sublibrary of Interleaving

Description The Matrix Interleaver block performs block interleaving by filling a matrix
with the input symbols row by row and then sending the matrix contents to the
output port column by column.

The Number of rows and Number of columns parameters are the dimensions
of the matrix that the block uses internally for its computations.

The number of elements of the input vector must be the product of Number of
rows and Number of columns. If the input is frame-based, then it must be a
column vector.

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Examples If the Number of rows and Number of columns parameters are 2 and 3,
respectively, then the interleaver uses a 2-by-3 matrix for its internal
computations. Given an input signal of [1; 2; 3; 4; 5; 6], the block
produces an output of [1; 4; 2; 5; 3; 6].

Matrix Interleaver

2-340

Pair Block Matrix Deinterleaver

See Also General Block Interleaver

M-DPSK Demodulator Baseband

2-341

2M-DPSK Demodulator BasebandPurpose Demodulate DPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-DPSK Demodulator Baseband block demodulates a signal that was
modulated using the M-ary differential phase shift keying method. The input
is a baseband representation of the modulated signal. The input and output for
this block are discrete-time signals. The input can be either a scalar or a
frame-based column vector.

The M-ary number parameter, M, is the number of possible output symbols
that can immediately follow a given output symbol. The block compares the
current symbol to the previous symbol. The block’s first output is the initial
condition of zero (or a group of zeros, if the Output type parameter is set to Bit)
because there is no previous symbol.

Binary or Integer Outputs
If the Output type parameter is set to Integer, then the block maps a phase
difference of

θ + 2πm/M

to m, where θ is the Phase offset parameter and m is an integer between 0 and
M-1.

If the Output type parameter is set to Bit and the M-ary number parameter
has the form 2K for some positive integer K, then the block outputs binary
representations of integers between 0 and M-1. It outputs a group of K bits,
called a binary word, for each symbol.

In binary output mode, the Constellation ordering parameter indicates how
the block maps an integer to a corresponding group of K output bits. See the
reference pages for the M-DPSK Modulator Baseband and M-PSK Modulator
Baseband blocks for details.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. If it is greater than
1, then the demodulated signal is delayed by one output sample. For more

M-DPSK Demodulator Baseband

2-342

information, see “Upsampled Signals and Rate Changes” in Using the
Communications Blockset.

Dialog Box

M-ary number
The number of possible modulated symbols that can immediately follow a
given symbol.

Output type
Determines whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Phase offset (rad)
The phase difference between the previous and current modulated symbols
when the input is zero.

M-DPSK Demodulator Baseband

2-343

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block M-DPSK Modulator Baseband

See Also DBPSK Demodulator Baseband, DQPSK Demodulator Baseband, M-PSK
Demodulator Baseband

References [1] Pawula, R. F. “On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels.” IEEE Transactions on Communications, vol. COM-32, July 1984.
752-761.

M-DPSK Demodulator Passband

2-344

2M-DPSK Demodulator PassbandPurpose Demodulate DPSK-modulated data

Library PM, in Digital Passband sublibrary of Modulation

Description The M-DPSK Demodulator Passband block demodulates a signal that was
modulated using the M-ary differential phase shift keying method. The input
is a passband representation of the modulated signal. The input and output for
this block are discrete-time signals. The input must be a sample-based scalar
signal.

The M-ary number parameter, M, is the number of possible output symbols
that can immediately follow a given output symbol. The block compares the
current symbol to the previous symbol. The block’s first output is the initial
condition of zero because there is no previous symbol.

This block converts the input to an equivalent baseband representation and
then uses the baseband equivalent block, M-DPSK Demodulator Baseband, for
internal computations. The following parameters in this block are the same as
those of the baseband equivalent block:

• M-ary number
• Output type
• Constellation ordering

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

M-DPSK Demodulator Passband

2-345

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

M-ary number
The number of possible modulated symbols that can immediately follow a
given symbol.

Output type
Determines whether the output consists of integers or groups of bits.

M-DPSK Demodulator Passband

2-346

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time
The sample time of the input signal.

Pair Block M-DPSK Modulator Passband

See Also M-DPSK Demodulator Baseband

References [1] Pawula, R. F. “On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels.” IEEE Transactions on Communications, vol. COM-32, July 1984.
752-761.

M-DPSK Modulator Baseband

2-347

2M-DPSK Modulator BasebandPurpose Modulate using the M-ary differential phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-DPSK Modulator Baseband block modulates using the M-ary
differential phase shift keying method. The output is a baseband
representation of the modulated signal. The M-ary number parameter, M, is
the number of possible output symbols that can immediately follow a given
output symbol.

The input must be a discrete-time signal.

Inputs and Constellation Types
If the Input type parameter is set to Integer, then valid input values are
integers between 0 and M-1. In this case, the input can be either a scalar or a
frame-based column vector. If the first input is m, then the modulated symbol
is

exp(jθ + jπm/2)

where θ is the Phase offset parameter. If a successive input is m, then the
modulated symbol is the previous modulated symbol multiplied by
exp(jθ + jπm/2).

If the Input type parameter is set to Bit and the M-ary number parameter has
the form 2K for some positive integer K, then the block accepts binary
representations of integers between 0 and M-1. It modulates each group of K
bits, called a binary word. The input can be either a vector of length K or a
frame-based column vector whose length is an integer multiple of K.

In binary input mode, the Constellation ordering parameter indicates how
the block maps a group of K input bits to a corresponding phase difference. The
Binary option uses a natural binary-to-integer mapping, while the Gray option
uses a Gray-coded assignment of phase differences. For example, the table

M-DPSK Modulator Baseband

2-348

below indicates the assignment of phase difference to three-bit inputs, for both
the Binary and Gray options. θ is the Phase offset parameter.

For more details about the Binary and Gray options, see the reference page for
the M-PSK Modulator Baseband block. The signal constellation for that block
corresponds to the arrangement of phase differences for this block.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Input Binary-Coded Phase
Differences

Gray-Coded Phase
Differences

[0 0 0] jθ jθ

[0 0 1] jθ + jπ/2 jθ + jπ/2

[0 1 0] jθ + jπ2/2 jθ + jπ3/2

[0 1 1] jθ + jπ3/2 jθ + jπ2/2

[1 0 0] jθ + jπ4/2 jθ + jπ6/2

[1 0 1] jθ + jπ5/2 jθ + jπ7/2

[1 1 0] jθ + jπ6/2 jθ + jπ5/2

[1 1 1] jθ + jπ7/2 jθ + jπ4/2

M-DPSK Modulator Baseband

2-349

Dialog Box

M-ary number
The number of possible output symbols that can immediately follow a given
output symbol.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Phase offset (rad)
The phase difference between the previous and current modulated symbols
when the input is zero.

M-DPSK Modulator Baseband

2-350

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block M-DPSK Demodulator Baseband

See Also DBPSK Modulator Baseband, DQPSK Modulator Baseband, M-PSK
Modulator Baseband

References [1] Pawula, R. F. “On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels.” IEEE Transactions on Communications, vol. COM-32, July 1984.
752-761.

M-DPSK Modulator Passband

2-351

2M-DPSK Modulator PassbandPurpose Modulate using the M-ary differential phase shift keying method

Library PM, in Digital Passband sublibrary of Modulation

Description The M-DPSK Modulator Passband block modulates using the M-ary
differential phase shift keying method. The output is a passband
representation of the modulated signal. The M-ary number parameter, M, is
the number of possible output symbols that can immediately follow a given
output symbol.

This block uses the baseband equivalent block, M-DPSK Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation. The following parameters in this block are the same
as those of the baseband equivalent block:

• M-ary number
• Input type
• Constellation ordering

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

M-DPSK Modulator Passband

2-352

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

M-ary number
The number of possible output symbols that can immediately follow a given
output symbol.

M-DPSK Modulator Passband

2-353

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block M-DPSK Demodulator Passband

See Also M-DPSK Modulator Baseband

References [1] Pawula, R. F. “On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels.” IEEE Transactions on Communications, vol. COM-32, July 1984.
752-761.

Memoryless Nonlinearity

2-354

2Memoryless NonlinearityPurpose Apply a memoryless nonlinearity to a complex baseband signal.

Library RF Impairments

Description The Memoryless Nonlinearity block applies a memoryless nonlinearity to a
complex, baseband signal. You can use the block to model radio frequency (RF)
impairments to a signal at the receiver.

The Memoryless Nonlinearity block provides five different methods for
modeling the nonlinearity, which you specify by the Method parameter in the
block’s mask. The options for the Method parameter are

• Cubic polynomial
• Hyperbolic tangent
• Saleh model
• Ghorbani model
• Rapp model

The five methods are implemented by subsystems underneath the block’s
mask. Each subsystem has the same basic structure, as shown in the figure
below.

Figure 2-3: Nonlinearity Subsytem

All five subsystems apply a nonlinearity to the input signal as follows:

1 Multiply the signal by a gain factor.

2 Split the complex signal into its its magnitude and angle components.

3 Apply an AM/AM conversion to the magnitude of the signal, according to the
selected Method, to produce the magnitude of the output signal.

Memoryless Nonlinearity

2-355

4 Apply an AM/PM conversion to the phase of the signal, according to the
selected Method, and adds the result to the angle of the signal to produce
the angle of the output signal.

5 Combine the new magnitude and angle components into a complex signal
and multiply the result by a gain factor, which is controlled by the Linear
gain parameter.

However, the subsystems implement the AM/AM and AM/PM conversions
differently, according to the Method you specify.

If you want to see exactly how the Memoryless Nonlinearity block implements
the conversions for a specific method, you can view the AM/AM and AM/PM
subsystems that implement these conversions as follows:

1 Right click on the Memoryless Nonlinearity block.

2 Select Look under mask in the pop-up menu. This displays the block’s
configuration underneath the mask. The block contains five subsystems
corresponding to the five nonlinearity methods.

3 Double-click the subsystem for the method you are interested in. This
displays the subsystem shown in the preceding figure, “Nonlinearity
Subsytem”.

4 Double-click on one of the subsystems labeled AM/AM or AM/PM to view
how the block implements the conversions.

The following figure shows, for the Saleh method, plots of

• Output voltage against input voltage for the AM/AM conversion

• Output phase against input voltage for the AM/PM conversion

Memoryless Nonlinearity

2-356

You can see the effect of the Memoryless Nonlinearity block on a signal
modulated by 16-ary quadrature amplitude modulation (QAM) in a scatter
plot. The constellation for 16-ary QAM without the effect of the Memoryless
Nonlinearity block is shown in the following figure:

Memoryless Nonlinearity

2-357

You can generate a scatter plot of the same signal after it passes through the
Memoryless Nonlinearity block, with the Method parameter set to Saleh
Model, as shown in the following figure.

Memoryless Nonlinearity

2-358

This plot is generated by the model described in “Scatter Plot Examples,” with
the following parameter settings for the Rectangular QAM Modulator
Baseband block:

• Normalization method set to Average Power

• Average power (watts) set to 1e-2

The following sections discuss parameters specific to the Saleh, Ghorbani, and
Rapp models.

Parameters for the Saleh Model
The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the parameter
value, converted from decibels to linear units. If you set the parameter to be the
inverse of the input signal amplitude, the scaled signal has amplitude
normalized to 1.

Memoryless Nonlinearity

2-359

The AM/AM parameters, alpha and beta, are used to compute the amplitude
gain for an input signal using the following function:

where u is the magnitude of the scaled signal.

The AM/PM parameters, alpha and beta, are used to compute the phase change
for an input signal using the following function:

where u is the magnitude of the input signal. Note that the AM/AM and
AM/PM parameters, although similarly named alpha and beta, are distinct.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Ghorbani Model
The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the parameter
value, converted from decibels to linear units. If you set the parameter to be the
inverse of the input signal amplitude, the scaled signal has amplitude
normalized to 1.

The AM/AM parameters, [x1 x2 x3 x4], are used to compute the amplitude gain
for an input signal using the following function:

where u is the magnitude of the scaled signal.

The AM/PM parameters, [y1 y2 y3 y4], are used to compute the phase change
for an input signal using the following function:

FAM AM⁄ u() alpha*u

1 beta*u2+
--------------------------------=

FAM PM⁄ u() alpha*u2

1 beta*u2+
--------------------------------=

FAM AM⁄ u()
x1u

x2

1 x3u
x2+

------------------------ x4u+=

FAM AM⁄ u()
x1u

x2

1 x3u
x2+

------------------------ x4u+=

Memoryless Nonlinearity

2-360

where u is the magnitude of the input signal.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Rapp Model
The Smoothness factor and Output saturation level parameters are used to
compute the amplitude gain for an input signal by the following function:

where S is the Smoothness factor and Osat is the Output saturation level.

The Rapp model does not apply a phase change to the input signal.

The Output saturation level parameter limits the output signal level.

Dialog Box

Method
The nonlinearity method.

The following describes specific parameters for each method.

FAM AM⁄ u() u

1 u
Osat
-----------⎝ ⎠
⎛ ⎞ 2S

+⎝ ⎠
⎛ ⎞ 1 2S⁄
---=

Memoryless Nonlinearity

2-361

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Memoryless Nonlinearity

2-362

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [alpha beta]
Vector specifying the AM/AM parameters.

AM/PM parameters [alpha beta]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [x1 x2 x3 x4]
Vector specifying the AM/AM parameters.

Memoryless Nonlinearity

2-363

AM/PM parameters [y1 y2 y3 y4]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

Linear gain (db)
Scalar specifying the linear gain for the output function.

Smoothness factor
Scalar specifying the smoothness factor

Output saturation level
Scalar specifying the the output saturation level.

See Also I/Q Imbalance

Reference [1] Saleh, A.A.M., "Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers," IEEE Trans. Communications, vol.
COM-29, pp.1715-1720, November 1981.

[2] A. Ghorbani, and M. Sheikhan, "The effect of Solid State Power Amplifiers
(SSPAs) Nonlinearities on MPSK and M-QAM Signal Transmission", Sixth
Int'l Conference on Digital Processing of Signals in Comm., 1991, pp. 193-197.

[3] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a
Digitial Sound Broadcasting System", in Proceedings of the Second European
Conference on Satellite Communications, Liege, Belgium, Oct. 22-24, 1991, pp.
179-184.

M-FSK Demodulator Baseband

2-364

2M-FSK Demodulator BasebandPurpose Demodulate FSK-modulated data

Library FM, in Digital Baseband sublibrary of Modulation

Description The M-FSK Demodulator Baseband block demodulates a signal that was
modulated using the M-ary frequency shift keying method. The input is a
baseband representation of the modulated signal. The input and output for this
block are discrete-time signals. The input can be either a scalar or a
frame-based column vector.

The M-ary number parameter, M, is the number of frequencies in the
modulated signal. The Frequency separation parameter is the distance, in
Hz, between successive frequencies of the modulated signal.

Binary or Integer Outputs
If the Output type parameter is set to Integer, then the block outputs integers
between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number parameter
has the form 2K for some positive integer K, then the block outputs binary
representations of integers between 0 and M-1. It outputs a group of K bits,
called a binary word, for each symbol.

In binary output mode, the Symbol set ordering parameter indicates how the
block maps an integer to a corresponding group of K output bits. See the
reference pages for the M-FSK Modulator Baseband and M-PSK Modulator
Baseband blocks for details.

Whether the output is an integer or a binary representation of an integer, the
block maps the highest frequency to the integer 0 and maps the lowest
frequency to the integer M-1. In baseband simulation, the lowest frequency is
the negative frequency with the largest absolute value.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

M-FSK Demodulator Baseband

2-365

Dialog Box

M-ary number
The number of frequencies in the modulated signal.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Samples per symbol
The number of input samples that represent each modulated symbol.

M-FSK Demodulator Baseband

2-366

Pair Block M-FSK Modulator Baseband

See Also CPFSK Demodulator Baseband

M-FSK Demodulator Passband

2-367

2M-FSK Demodulator PassbandPurpose Modulate using the M-ary frequency shift keying method

Library FM, in Digital Passband sublibrary of Modulation

Description The M-FSK Demodulator Passband block demodulates a signal that was
modulated using the M-ary frequency shift keying method. The input is a
passband representation of the modulated signal. The M-ary number
parameter, M, is the number of frequencies in the modulated signal.

This block converts the input to an equivalent baseband representation using
downconversion and then FIR decimation. The block then uses the baseband
equivalent block, M-FSK Demodulator Baseband, for internal computations.
The following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Output type
• Signal set ordering
• Frequency separation

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

M-FSK Demodulator Passband

2-368

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The M-FSK Demodulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

The Symbol period parameter must be an integer multiple of the product of
Output sample time times Baseband samples per symbol.

Dialog Box

M-FSK Demodulator Passband

2-369

M-ary number
The number of frequencies in the modulated signal.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time(s)
The sample time of the input signal.

Pair Block M-FSK Modulator Passband

See Also M-FSK Demodulator Baseband, CPFSK Demodulator Passband

M-FSK Modulator Baseband

2-370

2M-FSK Modulator BasebandPurpose Modulate using the M-ary frequency shift keying method

Library FM, in Digital Baseband sublibrary of Modulation

Description The M-FSK Modulator Baseband block modulates using the M-ary frequency
shift keying method. The output is a baseband representation of the modulated
signal.

The M-ary number parameter, M, is the number of frequencies in the
modulated signal. The Frequency separation parameter is the distance, in
Hz, between successive frequencies of the modulated signal. If the Phase
continuity parameter is set to Continuous, then the modulated signal
maintains its phase even when it changes its frequency. If the Phase
continuity parameter is set to Discontinuous, then the modulated signal
comprises portions of M sinusoids of different frequencies; thus, a change in the
input value might cause a change in the phase of the modulated signal.

Input Signal Values
The input and output for this block are discrete-time signals. The Input type
parameter determines whether the block accepts integers between 0 and M-1,
or binary representations of integers:

• If Input type is set to Integer, then the block accepts integers. The input can
be either a scalar or a frame-based column vector.

• If Input type is set to Bit, then the block accepts groups of K bits, called
binary words. The input can be either a vector of length K or a frame-based
column vector whose length is an integer multiple of K. The Symbol set
ordering parameter indicates how the block assigns binary words to
corresponding integers.

- If Symbol set ordering is set to Binary, then the block uses a natural
binary-coded ordering.

- If Symbol set ordering is set to Gray, then the block uses a Gray-coded
ordering. For details about the Gray coding, see the reference page for the
M-PSK Modulator Baseband block.

Whether the input is an integer or a binary representation of an integer, the
block maps the integer 0 to the highest frequency and maps the integer M-1 to
the lowest frequency. In baseband simulation, the lowest frequency is the
negative frequency with the largest absolute value.

M-FSK Modulator Baseband

2-371

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

M-ary number
The number of frequencies in the modulated signal.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

M-FSK Modulator Baseband

2-372

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Phase continuity
Determines whether the modulated signal changes phases in a continuous
or discontinuous way.

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block M-FSK Demodulator Baseband

See Also CPFSK Modulator Baseband

M-FSK Modulator Passband

2-373

2M-FSK Modulator Passband Purpose Modulate using the M-ary frequency shift keying method

Library FM, in Digital Passband sublibrary of Modulation

Description The M-FSK Modulator Passband block modulates using the M-ary frequency
shift keying method. The output is a passband representation of the modulated
signal. The M-ary number parameter, M, is the number of frequencies in the
modulated signal.

This block uses the baseband equivalent block, M-FSK Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation, using FIR interpolation and then upconversion. The
following parameters in this block are the same as those of the baseband
equivalent block:

• M-ary number
• Input type
• Symbol set ordering
• Frequency separation
• Phase continuity

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Whether the input is an integer or a binary representation of an integer, the
block maps the integer 0 to the highest frequency and maps the integer M-1 to
the lowest frequency.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each

M-FSK Modulator Passband

2-374

integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The M-FSK Modulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

M-FSK Modulator Passband

2-375

Dialog Box

M-ary number
The number of frequencies in the modulated signal.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

M-FSK Modulator Passband

2-376

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Phase continuity
Determines whether the modulated signal changes phases in a continuous
or discontinuous way.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time(s)
The sample time of the output signal.

Pair Block M-FSK Demodulator Passband

See Also M-FSK Modulator Baseband, CPFSK Modulator Passband

Modulo Integrator

2-377

2Modulo Integrator Purpose Integrate in continuous time and reduce by a modulus

Library Integrators, in Basic Comm Functions

Description The Modulo Integrator block integrates its input signal in continuous time and
then reduces modulo the Absolute value bound parameter. If the Absolute
value bound parameter is K, then the block output is strictly between -K and
K.

The input must be sample-based. The block processes each vector element
independently.

This block’s functionality is useful for monotonically increasing or decreasing
functions, but works with any integrable function. This block uses the Forward
Euler integration method.

Dialog Box

Absolute value bound
The modulus by which the integration result is reduced. This parameter
must be nonzero.

Initial condition
The initial condition for integration.

See Also Discrete Modulo Integrator, Integrator (Simulink)

M-PAM Demodulator Baseband

2-378

2M-PAM Demodulator BasebandPurpose Demodulate PAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The M-PAM Demodulator Baseband block demodulates a signal that was
modulated using the M-ary pulse amplitude modulation. The input is a
baseband representation of the modulated signal.

The signal constellation has M points, where M is the M-ary number
parameter. M must be an even integer. The block scales the signal constellation
based on how you set the Normalization method parameter. For details on the
constellation and its scaling, see the reference page for the M-PAM Modulator
Baseband block.

The input can be either a scalar or a frame-based column vector.

Output Signal Values
The Output type parameter determines whether the block produces integers
or binary representations of integers. If Output type is set to Integer, then the
block produces integers. If Output type is set to Bit, then the block produces a
group of K bits, called a binary word, for each symbol. The Constellation
ordering parameter indicates how the block assigns binary words to points of
the signal constellation. More details are on the reference page for the M-PAM
Modulator Baseband block.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer.

For more information, see “Upsampled Signals and Rate Changes” in Using the
Communications Blockset.

M-PAM Demodulator Baseband

2-379

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even
integer.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

M-PAM Demodulator Baseband

2-380

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block M-PAM Modulator Baseband

See Also General QAM Demodulator Baseband

M-PAM Demodulator Passband

2-381

2M-PAM Demodulator Passband Purpose Demodulate PAM-modulated data

Library AM, in Digital Passband sublibrary of Modulation

Description The M-PAM Demodulator Passband block demodulates a signal that was
modulated using M-ary pulse amplitude modulation. The input is a passband
representation of the modulated signal. The input must be a sample-based
scalar signal.

This block converts the input to an equivalent baseband representation and
then uses the baseband equivalent block, M-PAM Demodulator Baseband, for
internal computations. The following parameters in this block are the same as
those of the baseband equivalent block:

• M-ary number
• Output type
• Constellation ordering
• Normalization method
• Minimum distance
• Average power
• Peak power

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

M-PAM Demodulator Passband

2-382

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even
integer.

M-PAM Demodulator Passband

2-383

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

M-PAM Demodulator Passband

2-384

Input sample time
The sample time of the input signal.

Pair Block M-PAM Modulator Passband

See Also M-PAM Demodulator Baseband

M-PAM Modulator Baseband

2-385

2M-PAM Modulator BasebandPurpose Modulate using M-ary pulse amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The M-PAM Modulator Baseband block modulates using M-ary pulse
amplitude modulation. The output is a baseband representation of the
modulated signal. The M-ary number parameter, M, is the number of points
in the signal constellation. It must be an even integer.

Constellation Size and Scaling
Baseband M-ary pulse amplitude modulation using the block’s default signal
constellation maps an integer m between 0 and M-1 to the complex value

2m - M + 1

Note This is actually a real number. The block’s output signal is a complex
data-type signal whose imaginary part is zero.

The block scales the default signal constellation based on how you set the
Normalization method parameter. The table below lists the possible scaling
conditions.

Value of Normalization method
Parameter

Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value
of the Minimum distance parameter

Average Power The average power of the symbols in
the constellation is the Average
power parameter

Peak Power The maximum power of the symbols in
the constellation is the Peak power
parameter

M-PAM Modulator Baseband

2-386

Input Signal Values
The input and output for this block are discrete-time signals. The Input type
parameter determines whether the block accepts integers between 0 and M-1,
or binary representations of integers.

• If Input type is set to Integer, then the block accepts integers. The input can
be either a scalar or a frame-based column vector.

• If Input type is set to Bit, then the block accepts groups of K bits, called
binary words. The input can be either a vector of length K or a frame-based
column vector whose length is an integer multiple of K. The Constellation
ordering parameter indicates how the block assigns binary words to points
of the signal constellation.

- If Constellation ordering is set to Binary, then the block uses a natural
binary-coded constellation.

- If Constellation ordering is set to Gray, then the block uses a Gray-coded
constellation.

For details about the Gray coding, see the reference page for the M-PSK
Modulator Baseband block.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

M-PAM Modulator Baseband

2-387

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even
integer.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

M-PAM Modulator Baseband

2-388

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block M-PAM Demodulator Baseband

See Also General QAM Modulator Baseband

M-PAM Modulator Passband

2-389

2M-PAM Modulator Passband Purpose Modulate using M-ary pulse amplitude modulation

Library AM, in Digital Passband sublibrary of Modulation

Description The M-PAM Modulator Passband block modulates using M-ary pulse
amplitude modulation. The output is a passband representation of the
modulated signal. The M-ary number parameter, M, is the number of points
in the signal constellation. It must be an even integer.

This block uses the baseband equivalent block, M-PAM Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation. The following parameters in this block are the same
as those of the baseband equivalent block:

• M-ary number
• Input type
• Constellation ordering
• Normalization method
• Minimum distance
• Average power
• Peak power

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

M-PAM Modulator Passband

2-390

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

M-PAM Modulator Passband

2-391

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even
integer.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

M-PAM Modulator Passband

2-392

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block M-PAM Demodulator Passband

See Also M-PAM Modulator Baseband

M-PSK Demodulator Baseband

2-393

2M-PSK Demodulator BasebandPurpose Demodulate PSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-PSK Demodulator Baseband block demodulates a signal that was
modulated using the M-ary phase shift keying method. The input is a baseband
representation of the modulated signal. The input and output for this block are
discrete-time signals. The input can be either a scalar or a frame-based column
vector. The M-ary number parameter, M, is the number of points in the signal
constellation.

Binary or Integer Outputs
If the Output type parameter is set to Integer, then the block maps the point

exp(jθ + j2πm/M)

to m, where θ is the Phase offset parameter and m is an integer between 0 and
M-1.

If the Output type parameter is set to Bit and the M-ary number parameter
has the form 2K for some positive integer K, then the block outputs binary
representations of integers between 0 and M-1. It outputs a group of K bits,
called a binary word, for each symbol.

In binary output mode, the Constellation ordering parameter indicates how
the block maps an integer to a corresponding group of K output bits. See the
reference page for the M-PSK Modulator Baseband block for details.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

M-PSK Demodulator Baseband

2-394

Dialog Box

M-ary number
The number of points in the signal constellation.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Samples per symbol
The number of input samples that represent each modulated symbol.

M-PSK Demodulator Baseband

2-395

Pair Block M-PSK Modulator Baseband

See Also BPSK Demodulator Baseband, QPSK Demodulator Baseband, M-DPSK
Demodulator Baseband

M-PSK Demodulator Passband

2-396

2M-PSK Demodulator Passband Purpose Demodulate PSK-modulated data

Library PM, in Digital Passband sublibrary of Modulation

Description The M-PSK Demodulator Passband block demodulates a signal that was
modulated using the M-ary phase shift keying method. The input is a passband
representation of the modulated signal. The M-ary number parameter, M, is
the number of points in the signal constellation.

This block converts the input to an equivalent baseband representation and
then uses the baseband equivalent block, M-PSK Demodulator Baseband, for
internal computations. The following parameters in this block are the same as
those of the baseband equivalent block:

• M-ary number
• Output type
• Constellation ordering

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

M-PSK Demodulator Passband

2-397

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

M-ary number
The number of points in the signal constellation.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

M-PSK Demodulator Passband

2-398

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time
The sample time of the input signal.

Pair Block M-PSK Modulator Passband

See Also M-PSK Demodulator Baseband

M-PSK Modulator Baseband

2-399

2M-PSK Modulator BasebandPurpose Modulate using the M-ary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-PSK Modulator Baseband block modulates using the M-ary phase shift
keying method. The output is a baseband representation of the modulated
signal. The M-ary number parameter, M, is the number of points in the signal
constellation.

Baseband M-ary phase shift keying modulation with a phase offset of θ maps
an integer m between 0 and M-1 to the complex value

exp(jθ + j2πm/M)

The input and output for this block are discrete-time signals. To use integers
between 0 and M-1 as input values, set the Input type parameter to Integer.
In this case, the input can be either a scalar or a frame-based column vector.

Alternative configurations of the block determine how the block interprets its
input and arranges its output, as explained in the sections below.

Binary Inputs
If the Input type parameter is set to Bit and the M-ary number parameter has
the form 2K for some positive integer K, then the block accepts binary
representations of integers between 0 and M-1. It modulates each group of K
bits, called a binary word. The input can be either a vector of length K or a
frame-based column vector whose length is an integer multiple of K.

In binary input mode, the Constellation ordering parameter indicates how
the block maps a group of K input bits to a corresponding integer. Choices are
Binary and Gray. For more information, see “Binary-Valued and
Integer-Valued Signals” in Using the Communications Blockset.

If Constellation ordering is set to Gray, then the block uses a Gray-coded
signal constellation; as a result, binary representations that differ in more than
one bit cannot map to consecutive integers modulo M. The explicit mapping is
described in “Algorithm” below.

M-PSK Modulator Baseband

2-400

Frame-Based Inputs
If the input is a frame-based column vector, then the block processes several
integers or several binary words, in each time step. (If the Input type
parameter is set to Bit, then a binary word consists of log2(M) bits.)

For example, the schematics below illustrate how the block processes two 8-ary
integers or binary words in one time step. The signals involved are all
frame-based column vectors. In both cases, the Phase offset parameter is 0.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

6
2

-j
j

1
1
0
0
1
0

Input type parameter is Integer.

Input type parameter is Bit and
Constellation ordering
parameter is Binary.

-j
j

M-PSK Modulator Baseband

2-401

Dialog Box

M-ary number
The number of points in the signal constellation.

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

M-PSK Modulator Baseband

2-402

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Algorithm If the Constellation ordering parameter is set to Gray, then the block
internally assigns the binary inputs to points of a predefined Gray-coded signal
constellation. The block’s predefined M-ary Gray-coded signal constellation
assigns the binary representation

de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

to the mth phase. The zeroth phase in the constellation is the Phase offset
parameter, and successive phases are counted in a counterclockwise direction.

Note This transformation might seem counterintuitive because it constitutes
a Gray-to-binary mapping. However, the block must use it to impose a Gray
ordering on the signal constellation, which has a natural binary ordering.

In other words, if the block input is the natural binary representation, u, of the
integer U, then the block output has phase

jθ + j2πm/M

where θ is the Phase offset parameter and m is an integer between 0 and M-1
that satisfies

For example, if M = 8, then the binary representations that correspond to the
zeroth through seventh phases are below.

M = 8; m = [0:M-1]';
de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

ans =

 0 0 0
 0 0 1
 0 1 1
 0 1 0

m XOR m 2⁄ U=

M-PSK Modulator Baseband

2-403

 1 1 0
 1 1 1
 1 0 1
 1 0 0

Below is the 8-ary Gray-coded constellation that the block uses if the Phase
offset parameter is π/8.

Pair Block M-PSK Demodulator Baseband

See Also BPSK Modulator Baseband, QPSK Modulator Baseband, M-DPSK Modulator
Baseband

000

100

101111

010

011 001

110

M-PSK Modulator Passband

2-404

2M-PSK Modulator Passband Purpose Modulate using the M-ary phase shift keying method

Library PM, in Digital Passband sublibrary of Modulation

Description The M-PSK Modulator Passband block modulates using the M-ary phase shift
keying method. The output is a passband representation of the modulated
signal. The M-ary number parameter, M, is the number of points in the signal
constellation.

This block uses the baseband equivalent block, M-PSK Modulator Baseband,
for internal computations and converts the resulting baseband signal to a
passband representation. The following parameters in this block are the same
as those of the baseband equivalent block:

• M-ary number
• Input type
• Constellation ordering

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

M-PSK Modulator Passband

2-405

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

M-ary number
The number of points in the signal constellation.

M-PSK Modulator Passband

2-406

Input type
Indicates whether the input consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block M-PSK Demodulator Passband

See Also M-PSK Modulator Baseband

MSK Demodulator Baseband

2-407

2MSK Demodulator BasebandPurpose Demodulate MSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The MSK Demodulator Baseband block demodulates a signal that was
modulated using the minimum shift keying method. The input is a baseband
representation of the modulated signal. The Phase offset parameter is the
initial phase of the modulated waveform.

Traceback Length and Output Delays
Internally, this block creates a trellis description of the modulation scheme and
uses the Viterbi algorithm. The Traceback length parameter, D, in this block
is the number of trellis branches used to construct each traceback path. D
influences the output delay, which is the number of zero symbols that precede
the first meaningful demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1 zero
symbols.

• If the input signal is frame-based, then the delay consists of D zero symbols.

Inputs and Outputs
The input can be either a scalar or a frame-based column vector. If the Output
type parameter is set to Integer, then the block produces values of 1 and -1. If
the Output type parameter is set to Bit, then the block produces values of 0
and 1.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

MSK Demodulator Baseband

2-408

Dialog Box

Output type
Determines whether the output consists of bipolar or binary values.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block MSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

MSK Demodulator Passband

2-409

2MSK Demodulator Passband Purpose Demodulate MSK-modulated data

Library CPM, in Digital Passband sublibrary of Modulation

Description The MSK Demodulator Passband block demodulates a signal that was
modulated using the minimum shift keying method. The input is a passband
representation of the modulated signal.

This block converts the input to an equivalent baseband representation using
downconversion and then FIR decimation. The block then uses the baseband
equivalent block, MSK Demodulator Baseband, for internal computations. The
following parameters in this block are the same as those of the baseband
equivalent block:

• Output type
• Traceback length

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

where Fmax is defined as follows:

MSK Demodulator Passband

2-410

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The MSK Demodulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

Dialog Box

Output type
Determines whether the output consists of bipolar or binary values.

Symbol period(s)
The symbol period, which equals the sample time of the output.

MSK Demodulator Passband

2-411

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time (s)
The sample time of the input signal.

Traceback length
The number of trellis branches that the Viterbi Decoder block uses to
construct each traceback path.

Pair Block MSK Modulator Passband

See Also MSK Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

MSK Modulator Baseband

2-412

2MSK Modulator BasebandPurpose Modulate using the minimum shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The MSK Modulator Baseband block modulates using the minimum shift
keying method. The output is a baseband representation of the modulated
signal.

The Modulation index parameter times π radians is the phase shift due to the
latest symbol when that symbol is the integer 1. The Phase offset parameter
is the initial phase of the output waveform, measured in radians.

Input Attributes
The input can be either a scalar or a frame-based column vector. If the Input
type parameter is set to Integer, then the block accepts values of 1 and -1. If
the Input type parameter is set to Bit, then the block accepts values of 0 and 1.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

MSK Modulator Baseband

2-413

Input type
Indicates whether the input consists of bipolar or binary values.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each integer or
bit in the input.

Pair Block MSK Demodulator Baseband

See Also CPM Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

MSK Modulator Passband

2-414

2MSK Modulator Passband Purpose Modulate using the minimum shift keying method

Library CPM, in Digital Passband sublibrary of Modulation

Description The MSK Modulator Passband block modulates using the minimum shift
keying method. The output is a passband representation of the modulated
signal.

This block uses the baseband equivalent block, MSK Modulator Baseband, for
internal computations and converts the resulting baseband signal to a
passband representation using FIR interpolation and then upconversion. The
Input type parameter of this block is the same as that of the baseband
equivalent block.

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M), containing values of 0 and 1. If the
Input type parameter is Integer, then the input must be a scalar containing
values of 1 and -1.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Symbol period must be an integer multiple of the product of Output sample
time and Baseband samples per symbol.

• Baseband samples per symbol > 4

• Output sample time < [2*Carrier frequency + 2*Fmax)]-1

MSK Modulator Passband

2-415

where Fmax is defined as follows:

Fmax = [Frequency separation * (M-ary number - 1) / 2] + 1 / Symbol period

The Carrier frequency parameter is typically much larger than the highest
frequency of the baseband signal.

The MSK Modulator Passband block creates a delay in signals that it
processes. This delay is caused by FIR filters in the block, whose tap length
depends on signal and simulation parameters.

Dialog Box

Input type
Indicates whether the input consists of bipolar or binary values.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

MSK Modulator Passband

2-416

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time (s)
The sample time of the output signal.

Pair Block MSK Demodulator Passband

See Also MSK Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase
Modulation. New York: Plenum Press, 1986.

Mu-Law Compressor

2-417

2Mu-Law CompressorPurpose Implement µ-law compressor for source coding

Library Source Coding

Description The Mu-Law Compressor block implements a µ-law compressor for the input
signal. The formula for the µ-law compressor is

where µ is the µ-law parameter of the compressor, V is the peak magnitude of
x, log is the natural logarithm, and sgn is the signum function (sign in
MATLAB).

The input can have any shape or frame status. This block processes each vector
element independently.

Dialog Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output.

Pair Block Mu-Law Expander

See Also A-Law Compressor

References [1] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

y V 1 µ x V⁄+()log
1 µ+()log

--- x()sgn=

Mu-Law Expander

2-418

2Mu-Law ExpanderPurpose Implement µ-law expander for source coding

Library Source Coding

Description The Mu-Law Expander block recovers data that the Mu-Law Compressor block
compressed. The formula for the µ-law expander, shown below, is the inverse
of the compressor function.

The input can have any shape or frame status. This block processes each vector
element independently.

Dialog Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output.

Pair Block Mu-Law Compressor

See Also A-Law Expander

References [1] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs, N.J.: Prentice-Hall, 1988.

x V
µ
---- e y 1 µ+()log V⁄ 1–() y()sgn=

Multipath Rayleigh Fading Channel

2-419

2Multipath Rayleigh Fading ChannelPurpose Simulate a multipath Rayleigh fading propagation channel

Library Channels

Description The Multipath Rayleigh Fading Channel block implements a baseband
simulation of a multipath Rayleigh fading propagation channel. This block is
useful for modeling mobile wireless communication systems. For details about
fading channels, see the works listed in “References” on page 2-421.

The input can be either a scalar or a frame-based column vector. The input is
a complex signal.

Relative motion between the transmitter and receiver causes Doppler shifts in
the signal frequency. The Jakes PSD (power spectral density) determines the
spectrum of the Rayleigh process.

Since a multipath channel reflects signals at multiple places, a transmitted
signal travels to the receiver along several paths that may have different
lengths and hence different associated time delays. Fading occurs when signals
traveling along different paths interfere with each other. In the block’s
parameter mask, the Delay vector specifies the time delay for each path. If the
Normalize gain vector to 0 dB overall gain box is unchecked, then the Gain
vector specifies the gain for each path. If the box is checked, then the block
uses a multiple of Gain vector instead of the Gain vector itself, choosing the
scaling factor so that the channel’s effective gain considering all paths is 0 dB.

The number of paths is the length of Delay vector or Gain vector, whichever
is larger. If both of these parameters are vectors, then they must have the same
length; if exactly one of these parameters is a scalar, then the block expands it
into a vector whose size matches that of the other vector parameter.

The Sample time parameter is the time between successive elements of the
input signal. Note that if the input is a frame-based column vector of length n,
then the frame period (as Simulink’s Probe block reports, for example) is
n*Sample time.

The block multiplies the input signal by samples of a Rayleigh-distributed
complex random process. The scalar Initial seed parameter seeds the random
number generator.

Multipath Rayleigh Fading Channel

2-420

Dialog Box

Maximum Doppler shift (Hz)
A positive scalar that indicates the maximum Doppler shift.

Sample time
The period of each element of the input signal.

Delay vector (s)
A vector that specifies the propagation delay for each path.

Gain vector (dB)
A vector that specifies the gain for each path.

Normalize gain vector to 0 dB overall gain
Checking this box causes the block to scale the Gain vector parameter so
that the channel’s effective gain (considering all paths) is 0 decibels.

Initial seed
The scalar seed for the Gaussian noise generator.

Multipath Rayleigh Fading Channel

2-421

Algorithm This implementation is based on the direct form simulator described in
Reference [1] below.

Some wireless applications, such as standard GSM (Global System for Mobile
Communication) systems, prefer to specify Doppler shifts in terms of the speed
of the mobile. If the mobile moves at speed v making an angle of θ with the
direction of wave motion, then the Doppler shift is

fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of light. The
Doppler frequency is the maximum Doppler shift arising from motion of the
mobile.

See Also Rayleigh Noise Generator, Rician Fading Channel

References [1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam, Simulation
of Communication Systems, Second edition, New York, Kluwer
Academic/Plenum, 2000.

[2] Jakes, William C., ed. Microwave Mobile Communications, New York, IEEE
Press, 1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd Ed.
New York, Wiley, 1993.

OQPSK Demodulator Baseband

2-422

2OQPSK Demodulator BasebandPurpose Demodulate OQPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The OQPSK Demodulator Baseband block demodulates a signal that was
modulated using the offset quadrature phase shift keying method. The input is
a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The input can be either a
scalar or a frame-based column vector.

If the Output type parameter is set to Integer, then the block outputs integers
between 0 and 3. If the Output type parameter is set to Bit, then the block
outputs binary representations of such integers, in a binary-valued vector
whose length is an even number.

The input symbol period is half the period of each output integer or bit pair.
The constellation used to map bit pairs to symbols is on the reference page for
the OQPSK Modulator Baseband block.

Frame-Based Inputs
If the input is a frame-based column vector, then the block processes several
integers or several pairs of bits, in each time step. In this case, the output
sample time equals the input sample time, even though the symbol period is
half the output period.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer.

• If the input is a frame-based column vector, then the output vector contains
1/(2S) integers or pairs of bits for each sample in the input vector, while the
output sample time equals the input sample time.

• If the input is a sample-based scalar, then the output vector contains a single
integer or pair of bits, while the output sample time is 2S times the input
sample time.

OQPSK Demodulator Baseband

2-423

Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Phase offset (rad)
The amount by which the phase of the zeroth point of the signal
constellation is shifted from π/4.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block OQPSK Modulator Baseband

See Also QPSK Demodulator Baseband

OQPSK Demodulator Passband

2-424

2OQPSK Demodulator PassbandPurpose Demodulate OQPSK-modulated data

Library PM, in Digital Passband sublibrary of Modulation

Description The OQPSK Demodulator Passband block demodulates a signal that was
modulated using the offset quadrature phase shift keying method. The input is
a passband representation of the modulated signal.

If the Output type parameter is set to Integer, then the block outputs integers
between 0 and 3. If the Output type parameter is set to Bit, then the block
outputs binary representations of such integers, in binary-valued vectors of
length two. The constellation used to map bit pairs to symbols is on the
reference page for the OQPSK Modulator Passband block.

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

OQPSK Demodulator Passband

2-425

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

Output type
Indicates whether the output consists of integers or groups of bits.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

OQPSK Demodulator Passband

2-426

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Input sample time
The sample time of the input signal.

Pair Block OQPSK Modulator Passband

See Also OQPSK Demodulator Baseband

OQPSK Modulator Baseband

2-427

2OQPSK Modulator BasebandPurpose Modulate using the offset quadrature phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The OQPSK Modulator Baseband block modulates using the offset quadrature
phase shift keying method. The output is a baseband representation of the
modulated signal.

If the Input type parameter is set to Integer, then valid input values are 0, 1,
2, and 3. In this case, the input can be either a scalar or a frame-based column
vector.

If the Input type parameter is set to Bit, then the input must be a
binary-valued vector. In this case, the input can be either a vector of length two
or a frame-based column vector whose length is an even integer.

The symbol period is half the input period. The first output symbol is an initial
condition of zero that is unrelated to the input values.

The constellation used to map bit pairs to symbols is in the figure below. If the
block’s Phase offset parameter is nonzero, then this constellation is rotated by
that parameter value.

Frame-Based Inputs
If the input is a frame-based column vector, then the block processes several
integers or several pairs of bits in each time step. In this case, the output

0111

10 00

OQPSK Modulator Baseband

2-428

sample time equals the input sample time, even though the period of each
output symbol is half the period of each integer or bit pair in the input.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter, S, is the upsampling factor. It must be a
positive integer.

• If the input is a frame-based column vector, then the output vector length is
2S times the number of integers or pairs of bits in the input vector, while the
output sample time equals the input sample time. The one-symbol initial
condition inherent in this block corresponds to the first S elements of the first
output vector.

• If the input is a sample-based scalar, then the output vector is a scalar, while
the output sample time is 1/(2S) times the input sample time. The
one-symbol initial condition inherent in this block corresponds to the first S
samples.

Dialog Box

OQPSK Modulator Baseband

2-429

Input type
Indicates whether the input consists of integers or pairs of bits.

Phase offset (rad)
The amount by which the phase of the zeroth point of the signal
constellation is shifted from π/4.

Samples per symbol
The number of output samples that the block produces for each integer or
pair of bits in the input.

Pair Block OQPSK Demodulator Baseband

See Also QPSK Modulator Baseband

OQPSK Modulator Passband

2-430

2OQPSK Modulator Passband Purpose Modulate using the offset quadrature phase shift keying method

Library PM, in Digital Passband sublibrary of Modulation

Description The OQPSK Modulator Passband block modulates using the offset quadrature
phase shift keying method. The output is a passband representation of the
modulated signal.

If the Input type parameter is set to Integer, then valid input values are 0, 1,
2, and 3. In this case, the input must be a sample-based scalar. If the Input
type parameter is set to Bit, then the input must be a binary-valued
sample-based vector of length two.

The constellation used to map bit pairs to symbols is in the figure below.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

0111

10 00

OQPSK Modulator Passband

2-431

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for
some positive integer K.

OQPSK Modulator Passband

2-432

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or pair of
bits in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block OQPSK Demodulator Passband

See Also OQPSK Modulator Baseband

OVSF Code Generator

2-433

2OVSF Code GeneratorPurpose Generate an orthogonal variable spreading factor (OVSF) code from a set of
orthogonal codes

Library Spreading Codes

Description The OVSF Code Generator block generates an OVSF code from a set of
orthogonal codes. OVSF codes were first introduced for 3G communication
systems. OVSF codes are primarily used to preserve orthogonality between
different channels in a communication system.

OVSF codes are defined as the rows of an matrix, CN, which is defined
recursively as follows. First, define C1 = [1]. Next, assume that CN is defined
and let CN(k) denote the kth row of CN. Define C2N by

Note that CN is only defined for N a power of 2. It follows by induction that the
rows of CN are orthogonal.

The OVSF codes can also be defined recursively by a tree structure, as shown
in the following figure.

N N×

C2N

CN 0()

CN 0()

CN 1()

CN 1()

…
CN N 1–()

CN N 1–()

=

CN 0()

C– N 0()

CN 1()

C– N 1()

…
CN N 1–()

C– N N 1–()

OVSF Code Generator

2-434

If [C] is a code length 2r at depth r in the tree, where the root has depth 0, the
two branches leading out of C are labeled by the sequences [C C] and [C -C],
which have length 2r+1. The codes at depth r in the tree are the rows of the
matrix CN, where N = 2r.

Note that two OVSF codes are orthogonal if and only if neither code lies on the
path from the other code to the root. Since codes assigned to different users in
the same cell must be orthogonal, this restricts the number of available codes
for a given cell. For example, if the code C41 in the tree is assigned to a user,
the codes C10, C20, C82, C83, and so on, cannot be assigned to any other user in
the same cell.

Block Parameters
You specify the code the OVSV Code Generator block outputs by two
parameters in the block’s mask: the Spreading factor, which is the length of
the code, and the Code index, which must be an integer in the range
[0, 1, ... , N - 1], where N is the spreading factor. If the code appears at depth r
in the preceding tree, the Spreading factor is 2r. The Code index specifies

SF = 2SF = 1 SF = 4 SF = 8

2,0

2,1

4,0

4,1

 4,2

 4,3

 8,0

8,1

 8,2

 8,3

 8,4

 8,5

 8,6

 8,7

1,0 C = [1]

C = [1 1]

C = [1 -1]

C = [1 1 1 1]

C = [1 1 -1 -1]

C = [1 -1 1 -1]

C = [1 -1 -1 1]

C = [1 1 1 1 1 1 1 1]

 C = [1 1 1 1 -1 -1 -1 -1]

C = [1 1 -1 -1 1 1 -1 -1]

C = [1 1 -1 -1 -1 -1 1 1]

C = [1 -1 1 -1 1 -1 1 -1]

C = [1 -1 1 -1 -1 1 -1 1]

C = [1 -1 -1 1 1 -1 -1 1]

C = [1 -1 -1 1 -1 1 1 -1]

OVSF Code Generator

2-435

how far down the column of the tree at depth r the code appears, counting from
0 to N - 1. For CN, k in the preceding diagram, N is the Spreading factor and
k is the Code index.

You can recover the code from the Spreading factor and the Code index as
follows. Convert the Code index to the corresponding binary number, and then
add 0s to the left, if necessary, so that the resulting binary sequence x1 x2 ... xr
has length r, where r is the logarithm base 2 of the Spreading factor. This
sequence describes the path from the root to the code. The path takes the upper
branch from the code at depth i if xi = 0, and the lower branch if xi = 1.

To reconstruct the code, recursively define a sequence of codes Ci for as follows.
Let C0 be the root [1]. Assuming that Ci has been defined, for i < r, define Ci+1
by

The code CN has the specified Spreading factor and Code index.

For example, to find the code with Spreading factor 16 and Code index 6, do
the following:

1 Convert 6 to the binary number 110.

2 Add one 0 to the left to obtain 0110, which has length 4 = log2 16.

3 Construct the sequences Ci according to the following table.

i xi Ci

0 C0 = [1]

1 0 C1 = C0 C0 = [1] [1]

2 1 C2 = C1 -C1 = [1 1] [-1 -1]

3 1 C3 = C2 -C2 = [1 1 -1 -1] [-1 -1 1 1]

4 0 C4 = C3 C3 = [1 1 -1 -1 -1 -1 1 1] [1 1 -1 -1 -1 -1 1 1]

Ci 1+
CiCi

Ci Ci–()

if xi 0=

if xi 1=
⎩
⎪
⎨
⎪
⎧

=

OVSF Code Generator

2-436

The code C4 has Spreading factor 16 and Code index 6.

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Spreading factor

Positive integer that is a power of 2, specifying the length of the code.

Code index
Integer in the range [0, 1, ... , N - 1] specifying the code, where N is the
Spreading factor.

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

OVSF Code Generator

2-437

See Also Hadamard Code Generator, Walsh Code Generator

Phase/Frequency Offset

2-438

2Phase/Frequency OffsetPurpose Apply phase and frequency offsets to a complex baseband signal.

Library RF Impairments

Description The Phase/Frequency Offset block first applies a phase offset and then a
frequency offset to a complex, baseband signal. The block performs these
operations in the subsystem shown in the following diagram, which you can
view by right-clicking the block and selecting Look under mask:

You can view the implementation of the phase or frequency offsets by
double-clicking the Phase Offset or Frequency Offset subsystems under the
mask.

Phase Offset
The block applies a phase offset to the input signal, specified by the Phase
offset (deg) parameter.

Frequency Offset
The block applies a frequency offset to the signal that is specified by the
Frequency offset (Hz) parameter.

The effects of changing the block’s parameters are illustrated by the following
scatter plots of a signal modulated by 16-ary quadrature amplitude modulation
(QAM). The usual 16-ary QAM constellation without the effect of the
Phase/Frequency Offset block is shown in the first scatter plot:

Phase/Frequency Offset

2-439

Phase/Frequency Offset

2-440

The following figure shows a scatter plot of an output signal, modulated by
16-ary QAM, from the Phase/Frequency Offset block with Phase offset (deg)
set to 20 and Frequency offset (Hz) set to 0:

Observe that each point in the constellation is rotated by a 20 degree angle
counterclockwise.

If you set Frequency offset (Hz) to 2 and Phase offset (deg) to 0, the angles
of points in the constellation change linearly over time. This causes points in
the scatter plot to shift radially, as shown in the following figure:

Phase/Frequency Offset

2-441

Note that every point in the scatter plot has magnitude equal to a point in the
original constellation.

See “Scatter Plot Examples” for a description of the model that generates this
plot.

Dialog Box

Phase/Frequency Offset

2-442

Frequency offset (hz)
Scalar specifying the frequency offset in Hertz.

Phase offset (deg)
Scalar specifying the phase offset in degrees.

See Also Phase Noise

Phase-Locked Loop

2-443

2Phase-Locked Loop Purpose Implement a phase-locked loop to recover the phase of the input signal

Library Synchronization

Description The Phase-Locked Loop (PLL) block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match the
phase of an input signal. This block is most appropriate when the input is a
narrowband signal.

This PLL has these three components:

• A multiplier used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass filter
numerator and Lowpass filter denominator mask parameters. Each is a
vector that gives the respective polynomial’s coefficients in order of
descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2
in the Signal Processing Toolbox. The default filter is a Chebyshev type II
filter whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO
using the VCO quiescent frequency, VCO initial phase, and VCO output
amplitude parameters.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO

Phase-Locked Loop

2-444

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function, represented as a
vector that lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from
the VCO quiescent frequency value. The units of VCO input sensitivity
are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This
should match the carrier frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

Phase-Locked Loop

2-445

VCO output amplitude
The amplitude of the VCO signal.

See Also Baseband PLL, Linearized Baseband PLL, Charge Pump PLL

References For more information about phase-locked loops, see the works listed in
“Selected Bibliography for Synchronization” in Using the Communications
Blockset.

Phase Noise

2-446

2Phase NoisePurpose Apply receiver phase noise to a complex baseband signal

Library RF Impairments

Description The Phase Noise block appies phase noise to a complex, baseband signal. The
block applies the phase noise as follows:

1 Generates additive white Gaussian noise (AWGN) and filters it with a
digital filter.

2 Adds the resulting noise to the angle component of the input signal.

You can view the block’s implementation of phase noise by right-clicking on the
block and selecting Look under mask from the pop-up menu. This displays the
following figure:

You can view the construction of the Noise Source subsystem by
double-clicking it.

The effects of changing the block’s parameters are illustrated by the following
scatter plots of a signal modulated by 16-ary quadrature amplitude modulation
(QAM). The usual 16-ary QAM constellation without distortion is shown in the
first scatter plot:

Phase Noise

2-447

The following figure shows a scatter plot of an output signal, modulated by
16-ary QAM, from the Phase Noise block with Phase noise level (dBc/Hz) set
to -70 and Frequency offset (Hz) set to 100:

Phase Noise

2-448

This plot is generated by the model described in “Scatter Plot Examples,” with
the following parameter settings for the Rectangular QAM Modulator
Baseband block:

• Normalization method set to Average Power

• Average power (watts) set to 1e-12

Phase Noise

2-449

Dialog Box

Phase noise level (dBc/Hz)
Scalar specifying the phase noise level.

Frequency offset (Hz)
Scalar specifying the frequency offset in Hertz.

Initial seed
Nonnegative integer specifying the initial seed for the random number
generator the block uses to generate noise.

See Also Phase/Frequency Offset

PM Demodulator Baseband

2-450

2PM Demodulator Baseband Purpose Demodulate PM-modulated data

Library Analog Baseband Modulation, in Modulation

Description The PM Demodulator Baseband block demodulates a signal that was
modulated using phase modulation. The input is a baseband representation of
the modulated signal. The input is complex, while the output is real. The input
must be a sample-based scalar signal.

This block uses a phase-locked loop containing a voltage-controlled oscillator
(VCO). The VCO Gain parameter specifies the input sensitivity of the VCO.

In the course of demodulating, the block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Initial phase (rad)
The initial phase in the corresponding PM Modulator Baseband block.

PM Demodulator Baseband

2-451

Modulation constant (Radians per volt)
The modulation constant in the corresponding PM Modulator Baseband
block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

VCO gain (Hertz per volt)
The input sensitivity of the voltage-controlled oscillator.

Sample time
The sample time of the output signal.

Pair Block PM Modulator Baseband

PM Demodulator Passband

2-452

2PM Demodulator Passband Purpose Demodulate PM-modulated data

Library Analog Passband Modulation, in Modulation

Description The PM Demodulator Passband block demodulates a signal that was
modulated using phase modulation. The input is a passband representation of
the modulated signal. Both the input and output signals are real sample-based
scalar signals.

This block uses a phase-locked loop containing a voltage-controlled oscillator
(VCO). The VCO Gain parameter specifies the input sensitivity of the VCO.

In the course of demodulating, the block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

By the Nyquist sampling theorem, the reciprocal of the Sample time
parameter must exceed twice the Carrier frequency parameter.

Dialog Box

PM Demodulator Passband

2-453

Carrier frequency (Hz)
The carrier frequency in the corresponding PM Modulator Passband block.

Initial phase (rad)
The carrier signal’s initial phase in the corresponding PM Modulator
Passband block.

Modulation constant (Radians per volt)
The modulation constant in the corresponding PM Modulator Passband
block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

VCO Gain (Hertz per volt)
The input sensitivity of the voltage-controlled oscillator.

Sample time
The sample time of the output signal.

Pair Block PM Modulator Passband

PM Modulator Baseband

2-454

2PM Modulator Baseband Purpose Modulate using phase modulation

Library Analog Baseband Modulation, in Modulation

Description The PM Modulator Baseband block modulates using phase modulation. The
output is a baseband representation of the modulated signal. The input signal
is real, while the output signal is complex. The input must be a sample-based
scalar signal.

If the input is u(t) as a function of time t, then the output is

where θ is the Initial phase parameter and Kc is the Modulation constant
parameter.

Dialog Box

Initial phase (rad)
The phase of the modulated signal when the input is zero.

Modulation constant (Radians per volt)
Modulation constant Kc.

Pair Block PM Demodulator Baseband

jθ jKcu t()+()exp

PM Modulator Passband

2-455

2PM Modulator Passband Purpose Modulate using phase modulation

Library Analog Passband Modulation, in Modulation

Description The PM Modulator Passband block modulates using phase modulation. The
output is a passband representation of the modulated signal. The output
signal’s frequency varies with the input signal’s amplitude. Both the input and
output signals are real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

where fc is the Carrier frequency parameter, θ is the Initial phase parameter,
and Kc is the Modulation constant parameter.

An appropriate Carrier frequency value is generally much higher than the
highest frequency of the input signal. To avoid having to use a high carrier
frequency and consequently a high sampling rate, you can use baseband
simulation (PM Modulator Baseband block) instead of passband simulation.

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

2πfct Kcu t() θ+ +()cos

PM Modulator Passband

2-456

Initial phase (rad)
The initial phase of the carrier in radians.

Modulation constant (Radians per volt)
The modulation constant Kc.

Symbol interval
Inf by default. To use this block to model PSK, set this parameter to the
length of time required to transmit a single information bit.

Pair Block PM Demodulator Passband

See Also PM Modulator Baseband

PN Sequence Generator

2-457

2PN Sequence GeneratorPurpose Generate a pseudonoise sequence

Library Sequence Generators sublibrary of Comm Sources

Description The PN Sequence Generator block generates a sequence of pseudorandom
binary numbers. A pseudonoise sequence can be used in a pseudorandom
scrambler and descrambler. It can also be used in a direct-sequence
spread-spectrum system.

The PN Sequence Generator block uses a shift register to generate sequences,
as shown below.

All r registers in the generator update their values at each time step according
to the value of the incoming arrow to the shift register. The adders perform
addition modulo 2. The shift register is described by the Generator
Polynomial parameter, which is a primitive binary polynomial in z,

. The coefficient is 1 if there is a
connection from the kth register, as labeled in the preceding diagram, to the
adder. The leading term and the constant term of the Generator
Polynomial parameter must be 1.

m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

grzr gr 1– zr 1– gr 2– zr 2– … g0+ + + + gk

gr g0

PN Sequence Generator

2-458

You can specify the Generator polynomial parameter using either of these
formats:

• A vector that lists the coefficients of the polynomial in descending order of
powers. The first and last entries must be 1. Note that the length of this
vector is one more than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial,
.

The Initial states parameter is a vector specifying the initial values of the
registers. The Initial states parameter must satisfy these criteria:

• All elements of the Initial states vector must be binary numbers.

• The length of the Initial states vector must equal the degree of the generator
polynomial.

Note At least one element of the Initial states vector must be nonzero in
order for the block to generate a nonzero sequence. That is, the initial state of
at least one of the registers must be nonzero.

For example, the following table indicates two sets of parameter values that
correspond to a generator polynomial of .

Quantity Example 1 Example 2

Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

p z() z8 z2 1+ +=

p z() z8 z2 1+ +=

PN Sequence Generator

2-459

The Shift parameter shifts the starting point of the output sequence. With the
default setting for this parameter, the only connection is along the arrow
labeled m0, which corresponds to a shift of 0. The parameter is described in
greater detail below.

You can shift the starting point of the PN sequence with the Shift parameter.
You can specify the parameter in either of two ways:

• An integer representing the length of the shift

• A binary vector, called the mask vector, whose length is equal to the degree
of the generator polynomial

The difference between the block’s output when you set Shift (or mask) to 0,
versus a positive integer d, is shown in the following table.

Alternatively, you can set the Shift parameter to a binary vector,
corresponding to a polynomial in z, , of
degree at most r - 1. The mask vector corresponding to a shift of d is the vector
that represents modulo g(z), where g(z) is the generator
polynomial. For example, if the degree of the generator polynomial is 4, then
the mask vector corresponding to d = 2 is [0 1 0 0], which represents the
polynomial . The preceding schematic diagram shows how the Shift
(or mask) parameter is implemented when you specify it as a mask vector. The
default setting for the Shift (or mask) parameter is [0 0 0 1], which
corresponds to d = 0. You can calculate the mask vector using the
Communications Toolbox function shift2mask.

You can use an external signal to reset the values of the internal shift register
to the initial state by selecting the Reset on nonzero input check box. This
creates an input port for the external signal in the PN Sequence Generator
block. The way the block resets the internal shift register depends on whether
its output signal and the reset signal are sample-based or frame-based. The
following example demonstrates the possible alternatives.

T = 0 T = 1 T = 2 T = d T = d+1

Shift = 0 x0 x1 x2 xd xd+1

Shift = d xd xd+1 xd+2 x2d x2d+1

…

…

…

mr 1– zr 1– mr 2– zr 2– … m1z m0+ + + +

m z() zd=

m z() z2=

PN Sequence Generator

2-460

Example: Resetting a Signal
Suppose that the PN Sequence Generator block outputs [1 0 0 1 1 0 1 1]
when there is no reset. You then select the Reset on nonzero input check box
and input a reset signal [0 0 0 1]. The following table shows three possibilities
for the properties of the reset signal and the PN Sequence Generator block.

In the first two cases, the PN sequence is reset at the fourth bit, because the
fourth bit of the reset signal is a 1 and the Sample time is 1. Note that in the
second case, the frame sizes are 2, and the reset occurs at the end of the second
frame.

In the third case, the PN sequence is reset at the seventh bit. This is because
the reset signal has Sample time 2, so the reset bit is first sampled at the
seventh bit. With these settings, the reset always occurs at the beginning of a
frame.

Reset Signal
Properties

PN Sequence
Generator block

Reset Signal
Output Signal

Sample-based
Sample time = 1

Sample-based
Sample time = 1

Frame-based
Sample time =1
Samples per
frame = 2

Frame-based
Sample time = 1
Samples per
frame = 2

Sample-based
Sample time = 2
Samples per
frame = 1

Frame-based
Sample time = 1
Samples per
frame = 2

1 0 0 1 0 0 1 1 0 1 1

Reset
0 0 0 1

1 0 0 1 0 0 1 1 0 1 1

Reset
0 0 0 1

1 0 0 1 1 0 1 0 0 1 1 0 1 1

Reset
0 0 0 1

PN Sequence Generator

2-461

Attributes of Output Signal
If the Frame-based outputs box is selected, the output signal is a frame-based
column vector whose length is the Samples per frame parameter. Otherwise,
the output signal is a one-dimensional scalar.

Sequences of Maximum Length
If you want to generate a sequence of the maximum possible length for a fixed
degree, r, of the generator polynomial, you can set Generator polynomial to a
value from the following table. See [1] for more information about the
shift-register configurations that these polynomials represent.

r Generator Polynomial r Generator Polynomial

2 [2 1 0] 21 [21 19 0]

3 [3 2 0] 22 [22 21 0]

4 [4 3 0] 23 [23 18 0]

5 [5 3 0] 24 [24 23 22 17 0]

6 [6 5 0] 25 [25 22 0]

7 [7 6 0] 26 [26 25 24 20 0]

8 [8 6 5 4 0] 27 [27 26 25 22 0]

9 [9 5 0] 28 [28 25 0]

10 [10 7 0] 29 [29 27 0]

11 [11 9 0] 30 [30 29 28 7 0]

12 [12 11 8 6 0] 31 [31 28 0]

13 [13 12 10 9 0] 32 [32 31 30 10 0]

14 [14 13 8 4 0] 33 [33 20 0]

15 [15 14 0] 34 [34 15 14 1 0]

16 [16 15 13 4 0] 35 [35 2 0]

PN Sequence Generator

2-462

17 [17 14 0] 36 [36 11 0]

18 [18 11 0] 37 [37 12 10 2 0]

19 [19 18 17 14 0] 38 [38 6 5 1 0]

20 [20 17 0] 39 [39 8 0]

40 [40 5 4 3 0] 47 [47 14 0]

41 [41 3 0] 48 [48 28 27 1 0]

42 [42 23 22 1 0] 49 [49 9 0]

43 [43 6 4 3 0] 50 [50 4 3 2 0]

44 [44 6 5 2 0] 51 [51 6 3 1 0]

45 [45 4 3 1 0] 52 [52 3 0]

46 [46 21 10 1 0] 53 [53 6 2 1 0]

r Generator Polynomial r Generator Polynomial

PN Sequence Generator

2-463

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Generator polynomial

Polynomial that determines the shift register’s feedback connections.

Initial states
Vector of initial states of the shift registers.

Shift (or mask)
Integer scalar or binary vector that determines the delay of the PN
sequence from the initial time. If you specify the shift as a binary vector,
the vector’s length must equal the degree of the generator polynomial.

PN Sequence Generator

2-464

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift
registers to the original values of the Initial states parameter.

See Also Kasami Sequence Generator, Scrambler

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[2] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Artech
House, 1998.

[3] Golomb, S.W., Shift Register Sequences, Aegean Park Press, 1967.

Poisson Integer Generator

2-465

2Poisson Integer Generator Purpose Generate Poisson-distributed random integers

Library Data Sources sublibrary of Comm Sources

Description The Poisson Integer Generator block generates random integers using a
Poisson distribution. The probability of generating a nonnegative integer k is

, where λ is a positive number known as the Poisson
parameter.

You can use the Poisson Integer Generator to generate noise in a binary
transmission channel. In this case, the Poisson parameter Lambda should be
less than 1, usually much less.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the number of
columns in a frame-based output or the number of elements in a sample-based
vector output. Also, the shape (row or column) of the Initial seed parameter
becomes the shape of a sample-based two-dimensional output signal.

λk λ–()exp k!()⁄

Poisson Integer Generator

2-466

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Lambda

The Poisson parameter λ. If it is a scalar, then every element in the output
vector shares the same Poisson parameter.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Poisson Integer Generator

2-467

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Random Integer Generator; poissrnd (Statistics Toolbox)

Puncture

2-468

2PuncturePurpose Output the elements which correspond to 1s in the binary Puncture vector

Library Sequence Operations, in Basic Comm Functions

Description The Puncture block creates an output vector by removing selected elements of
the input vector and preserving others. The input can be a real or complex
vector of length K. The block determines which elements to remove or preserve
by using the binary Puncture vector parameter:

• If Puncture vector(k) = 0, then the kth element of the input vector does not
become part of the output vector.

• If Puncture vector(k) = 1, then the kth element of the input vector is
preserved in the output vector.

Here, k is between 1 and K. The preserved elements appear in the output
vector in the same order in which they appear in the input vector.

Frame-Based Processing
If the input is frame-based, then both it and the Puncture vector parameter
must be column vectors. The length of the Puncture vector parameter must
divide K. The block repeats the puncturing pattern, if necessary, to cover all
input elements. That is, in the bulleted items above you can replace
Puncture vector(k) by Puncture vector(n), where

n = mod(k,length(Puncture vector))

and mod is the modulus function (mod in MATLAB).

Dialog Box

Puncture

2-469

Puncture vector
A binary vector whose pattern of 0s (1s) indicates which elements of the
input the block should remove (preserve).

Examples If the Puncture vector parameter is the six-element vector [1;0;1;1;1;0],
then the block:

• Removes the second and sixth elements from the group of six input elements.

• Sends the first, third, fourth, and fifth elements to the output vector.

The diagram below depicts the block’s operation on an input vector of [1:6],
using this Puncture vector parameter.

See Also Insert Zero

[1 2 3 4 5 6]

[1 3 4 5]

= Remove entry when creating output

= Preserve entry in output

Shading Key for Input Vector

QPSK Demodulator Baseband

2-470

2QPSK Demodulator BasebandPurpose Demodulate QPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The QPSK Demodulator Baseband block demodulates a signal that was
modulated using the quaternary phase shift keying method. The input is a
baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The input can be either a
scalar or a frame-based column vector.

If the Output type parameter is set to Integer, then the block maps the point

exp(jθ + jπm/2)

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

If the Output type parameter is set to Bit, then the output contains pairs of
binary values. The reference page for the QPSK Modulator Baseband block
shows the signal constellations for the cases when the Constellation ordering
parameter is either Binary or Gray.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer.

For more information, see “Upsampled Signals and Rate Changes” in Using the
Communications Blockset.

QPSK Demodulator Baseband

2-471

Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output bits. This
field is active only when Output type is set to Bit.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block QPSK Modulator Baseband

See Also M-PSK Demodulator Baseband, BPSK Demodulator Baseband, DQPSK
Demodulator Baseband

QPSK Modulator Baseband

2-472

2QPSK Modulator BasebandPurpose Modulate using the quaternary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The QPSK Modulator Baseband block modulates using the quaternary phase
shift keying method. The output is a baseband representation of the modulated
signal.

Inputs and Constellation Types
If the Input type parameter is set to Integer, then valid input values are 0, 1,
2, and 3. If the input is m, then the output symbol is

exp(jθ + jπm/2)

where θ is the Phase offset parameter. In this case, the input can be either a
scalar or a frame-based column vector.

If the Input type parameter is set to Bit, then the input contains pairs of
binary values. The input can be either a vector of length two or a frame-based
column vector whose length is an even integer. If the Phase offset parameter
is set to pi/4, then the block uses one of the signal constellations in the figure
below, depending on whether the Constellation ordering parameter is set to
Binary or Gray.

1110

01 00

1011

01 00

Binary Gray

QPSK Modulator Baseband

2-473

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Samples per symbol
The number of output samples that the block produces for each integer or
pair of bits in the input.

QPSK Modulator Baseband

2-474

Pair Block QPSK Demodulator Baseband

See Also M-PSK Modulator Baseband, BPSK Modulator Baseband, DQPSK Modulator
Baseband

Quantizer Decode

2-475

2Quantizer Decode Purpose Decode quantization index according to codebook

Library Source Coding

Description The Quantizer Decode block recovers a message from a quantized signal,
converting the quantization index into the corresponding codebook value. The
Quantization codebook parameter, a vector of length N, prescribes the
possible output values. If the input is an integer k between 0 and N-1, then the
output is the (k+1)st element of Quantization codebook.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. This block processes each vector element independently. Each output
signal is a vector of the same length as the input signal.

Note The Sampled Quantizer Encode and Enabled Quantizer Encode blocks
also use a Quantization codebook parameter. The first output of those blocks
corresponds to the input of Quantizer Decode; the second output of those
blocks corresponds to the output of Quantizer Decode.

Dialog Box

Quantization codebook
A real vector that prescribes the output value corresponding to each input
integer.

Pair Block Sampled Quantizer Encode or Enabled Quantizer Encode

Random Deinterleaver

2-476

2Random DeinterleaverPurpose Restore ordering of the input symbols using a random permutation

Library Block sublibrary of Interleaving

Description The Random Deinterleaver block rearranges the elements of its input vector
using a random permutation. The Initial seed parameter initializes the
random number generator that the block uses to determine the permutation. If
this block and the Random Interleaver block have the same value for Initial
seed, then the two blocks are inverses of each other.

The Number of elements parameter indicates how many numbers are in the
input vector.If the input is frame-based, then it must be a column vector.

Dialog Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block Random Interleaver

See Also General Block Deinterleaver

Random Integer Generator

2-477

2Random Integer Generator Purpose Generate integers randomly distributed in the range [0, M-1]

Library Data Sources sublibrary of Comm Sources

Description The Random Integer Generator block generates uniformly distributed random
integers in the range [0, M-1], where M is the M-ary number defined in the
dialog box.

The M-ary number can be either a scalar or a vector. If it is a scalar, then all
output random variables are independent and identically distributed (i.i.d.). If
the M-ary number is a vector, then its length must equal the length of the
Initial seed; in this case each output has its own output range.

If the Initial seed parameter is a constant, then the resulting noise is
repeatable.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the number of
columns in a frame-based output or the number of elements in a sample-based
vector output. Also, the shape (row or column) of the Initial seed parameter
becomes the shape of a sample-based two-dimensional output signal.

Random Integer Generator

2-478

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
M-ary number

The positive integer, or vector of positive integers, that indicates the range
of output values.

Initial seed
The initial seed value for the random number generator. The vector length
of the seed determines the length of the output vector.

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Random Integer Generator

2-479

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also randint (Communications Toolbox)

Random Interleaver

2-480

2Random InterleaverPurpose Reorder the input symbols using a random permutation

Library Block sublibrary of Interleaving

Description The Random Interleaver block rearranges the elements of its input vector
using a random permutation. The Number of elements parameter indicates
how many numbers are in the input vector.If the input is frame-based, then it
must be a column vector.

The Initial seed parameter initializes the random number generator that the
block uses to determine the permutation. The block is predictable for a given
seed, but different seeds produce different permutations.

Dialog Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block Random Deinterleaver

See Also General Block Interleaver

Rayleigh Noise Generator

2-481

2Rayleigh Noise Generator Purpose Generate Rayleigh distributed noise

Library Noise Generators sublibrary of Comm Sources

Description The Rayleigh Noise Generator block generates Rayleigh distributed noise. The
Rayleigh probability density function is given by

where is known as the fading envelope of the Rayleigh distribution.

The block requires you to specify the Initial seed for the random number
generator. If it is a constant, then the resulting noise is repeatable. The sigma
parameter can be either a vector of the same length as the Initial seed, or a
scalar. When sigma is a scalar, every element of the output signal shares that
same value.

Initial Seed
The Initial seed parameter initializes the random number generator that the
Rayleigh Noise Generator block uses to add noise to the input signal. For best
results, the Initial seed should be a prime number greater than 30. Also, if
there are other blocks in a model that have an Initial seed parameter, you
should choose different initial seeds for all such blocks.

You can choose seeds for the Rayleigh Noise Generator block using the
Communications Blockset’s randseed function. At the MATLAB prompt, type
the command

randseed

This returns a random prime number greater than 30. Typing randseed again
produces a different prime number. If you add an integer argument, randseed
always returns the same prime for that integer. For example, randseed(5)
always returns the same answer.

f x()
x

σ2
------e

x2

2σ2
---------–

x 0≥

0 x 0<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

σ2

Rayleigh Noise Generator

2-482

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the number of
columns in a frame-based output or the number of elements in a sample-based
vector output. Also, the shape (row or column) of the Initial seed parameter
becomes the shape of a sample-based two-dimensional output signal.

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Sigma

Specify σ as defined in the Rayleigh probability density function.

Initial seed
The initial seed value for the random number generator.

Rayleigh Noise Generator

2-483

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Multipath Rayleigh Fading Channel; raylrnd (Statistics Toolbox)

References [1] Proakis, John G. Digital Communications, Third edition. New York:
McGraw Hill, 1995.

Receiver Thermal Noise

2-484

2Receiver Thermal NoisePurpose Apply receiver thermal noise to a complex baseband signal

Library RF Impairments

Description The Receiver Thermal Noise block simulates the effects of thermal noise on a
complex, baseband signal. You can specify the amount of thermal noise in three
ways, according to which Specification method you select:

• Noise temperature – specifies the noise in degrees Kelvin

• Noise figure – specifies the noise in decibels relative to a noise temperature
of 290 degrees Kelvin

• Noise factor – specifies the noise in by the following equation6:

The following scatter plot shows the effect of the Receiver Thermal Noise block,
with Specification method set to Noise Figure and Noise figure (db) set to
3.01, on a signal modulated by 16 -QAM.

Noise factor1 Noise temperature
290

--+=

Receiver Thermal Noise

2-485

S

This plot is generated by the model described in “Scatter Plot Examples, with
the following parameter settings:

• Rectangular QAM Modulator Baseband

- Normalization method set to Average Power

- Average power (watts) set to 1e-12

• Receiver Thermal Noise

- Specification method set to Noise figure

- Noise figure (dB) set to 3.01

Receiver Thermal Noise

2-486

Dialog Box

Specification method
The method by which you specify the amount of noise. The choices are
Noise temperature, Noise figure, and Noise factor.

Noise temperature (K)
Scalar specifying the amount of noise in degrees Kelvin.

Noise figure
Scalar specifying the amount of noise in decibels relative to a noise
temperature of 290 degrees Kelvin. A Noise figure setting of 0 dB indicates
a noiseless system.

Receiver Thermal Noise

2-487

Noise factor
Scalar specifying the amount of noise relative to a noise temperature of 290
degrees Kelvin.

Initial seed
The initial seed value for the random number generator that generates the
noise.

See Also Free Space Path Loss

Rectangular QAM Demodulator Baseband

2-488

2Rectangular QAM Demodulator BasebandPurpose Demodulate QAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The Rectangular QAM Demodulator Baseband block demodulates a signal that
was modulated using quadrature amplitude modulation with a constellation on
a rectangular lattice.

The signal constellation has M points, where M is the M-ary number
parameter. M must have the form 2K for some positive integer K. The block
scales the signal constellation based on how you set the Normalization
method parameter. For details, see the reference page for the Rectangular
QAM Modulator Baseband block.

The input can be either a scalar or a frame-based column vector.

Output Signal Values
The Output type parameter determines whether the block produces integers
or binary representations of integers. If Output type is set to Integer, then the
block produces integers. If Output type is set to Bit, then the block produces a
group of K bits, called a binary word, for each symbol. The Constellation
ordering parameter indicates how the block assigns binary words to points of
the signal constellation. More details are on the reference page for the
Rectangular QAM Modulator Baseband block.

Processing an Upsampled Modulated Signal
The input signal can be an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Rectangular QAM Demodulator Baseband

2-489

Dialog Box

M-ary number
The number of points in the signal constellation. It must have the form 2K
for some positive integer K.

Output type
Indicates whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Rectangular QAM Demodulator Baseband

2-490

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power among the symbols in the constellation. This field
appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Samples per symbol
The number of input samples that represent each modulated symbol.

Pair Block Rectangular QAM Modulator Baseband

See Also General QAM Demodulator Baseband

References [1] Smith, Joel G. “Odd-Bit Quadrature Amplitude-Shift Keying.” IEEE
Transactions on Communications, vol. COM-23, March 1975. 385-389.

Rectangular QAM Demodulator Passband

2-491

2Rectangular QAM Demodulator PassbandPurpose Demodulate QAM-modulated data

Library AM, in Digital Passband sublibrary of Modulation

Description The Rectangular QAM Demodulator Passband block demodulates a signal that
was modulated using quadrature amplitude modulation with a constellation on
a rectangular lattice. The signal constellation has M points, where M is the
M-ary number parameter. M must have the form 2K for some positive integer
K.

This block converts the input to an equivalent baseband representation and
then uses the baseband equivalent block, M-PAM Demodulator Baseband, for
internal computations. The following parameters in this block are the same as
those of the baseband equivalent block:

• M-ary number
• Output type
• Constellation ordering
• Normalization method
• Minimum distance
• Average power
• Peak power

The input must be a sample-based scalar signal.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Input sample time parameter specifies
the sample time of the input signal, while the Symbol period parameter
equals the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate signal during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the output.

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

Rectangular QAM Demodulator Passband

2-492

• Input sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Also, this block incurs an extra output period of delay compared to its baseband
equivalent block.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Dialog Box

Rectangular QAM Demodulator Passband

2-493

M-ary number
The number of points in the signal constellation. It must have the form 2K
for some positive integer K.

Output type
Indicates whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output bits. This
field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power among the symbols in the constellation. This field
appears only when Normalization method is set to Peak Power.

Symbol period (s)
The symbol period, which equals the sample time of the output.

Baseband samples per symbol
The number of baseband samples that represent each modulated symbol,
after the block converts the passband input to a baseband intermediary
signal.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Rectangular QAM Demodulator Passband

2-494

Input sample time
The sample time of the input signal.

Pair Block Rectangular QAM Modulator Passband

See Also General QAM Demodulator Passband, Rectangular QAM Demodulator
Baseband

References [1] Smith, Joel G, “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE
Transactions on Communications, vol. COM-23, March 1975, pp. 385-389.

Rectangular QAM Modulator Baseband

2-495

2Rectangular QAM Modulator BasebandPurpose Modulate using M-ary quadrature amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The Rectangular QAM Modulator Baseband block modulates using M-ary
quadrature amplitude modulation with a constellation on a rectangular lattice.
The output is a baseband representation of the modulated signal.

Constellation Size and Scaling
The signal constellation has M points, where M is the M-ary number
parameter. M must have the form 2K for some positive integer K. The block
scales the signal constellation based on how you set the Normalization
method parameter. The table below lists the possible scaling conditions.

Input Signal Values
The input and output for this block are discrete-time signals. The Input type
parameter determines whether the block accepts integers between 0 and M-1,
or binary representations of integers:

• If Input type is set to Integer, then the block accepts integers. The input can
be either a scalar or a frame-based column vector.

• If Input type is set to Bit, then the block accepts groups of K bits, called
binary words. The input can be either a vector of length K or a frame-based

Value of Normalization method
parameter

Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value
of the Minimum distance parameter.

Average Power The average power of the symbols in
the constellation is the Average
power parameter.

Peak Power The maximum power of the symbols in
the constellation is the Peak power
parameter.

Rectangular QAM Modulator Baseband

2-496

column vector whose length is an integer multiple of K. The Constellation
ordering parameter indicates how the block assigns binary words to points
of the signal constellation. Such assignments apply independently to the
in-phase and quadrature components of the input:

- If Constellation ordering is set to Binary, then the block uses a natural
binary-coded constellation.

- If Constellation ordering is set to Gray and K is even, then the block uses
a Gray-coded constellation.

- If Constellation ordering is set to Gray and K is odd, then the block codes
the constellation so that pairs of nearest points differ in one or two bits.
The constellation is cross-shaped, and the schematic below indicates
which pairs of points differ in two bits. The schematic uses M = 128, but
suggests the general case.

For details about the Gray coding, see the reference page for the M-PSK
Modulator Baseband block and the paper listed in “References” below. Note
that since the in-phase and quadrature components are assigned
independently, the Gray and binary orderings coincide when M = 4.

Upsampling the Modulated Signal
This block can output an upsampled version of the modulated signal. The
Samples per symbol parameter is the upsampling factor. It must be a positive
integer. For more information, see “Upsampled Signals and Rate Changes” in
Using the Communications Blockset.

Hollow vertical pairs of
adjacent points differ by two

Other pairs of adjacent
points differ by one bit

Rectangular QAM Modulator Baseband

2-497

Dialog Box

M-ary number
The number of points in the signal constellation. It must have the form 2K
for some positive integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Rectangular QAM Modulator Baseband

2-498

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Samples per symbol
The number of output samples that the block produces for each integer or
binary word in the input.

Pair Block Rectangular QAM Demodulator Baseband

See Also General QAM Modulator Baseband

References [1] Smith, Joel G. “Odd-Bit Quadrature Amplitude-Shift Keying.” IEEE
Transactions on Communications, vol. COM-23, March 1975. 385-389.

Rectangular QAM Modulator Passband

2-499

2Rectangular QAM Modulator PassbandPurpose Modulate using M-ary quadrature amplitude modulation

Library AM, in Digital Passband sublibrary of Modulation

Description The Rectangular QAM Modulator Passband block modulates using M-ary
quadrature amplitude modulation with a constellation on a rectangular lattice.
The output is a passband representation of the modulated signal. The signal
constellation has M points, where M is the M-ary number parameter. M must
have the form 2K for some positive integer K.

This block uses the baseband equivalent block, Rectangular QAM Modulator
Baseband, for internal computations and converts the resulting baseband
signal to a passband representation. The following parameters in this block are
the same as those of the baseband equivalent block:

• M-ary number
• Input type
• Constellation ordering
• Normalization method
• Minimum distance
• Average power
• Peak power

The input must be sample-based. If the Input type parameter is Bit, then the
input must be a vector of length log2(M). If the Input type parameter is
Integer, then the input must be a scalar.

Parameters Specific to Passband Simulation
Passband simulation uses a carrier signal. The Carrier frequency and
Carrier initial phase parameters specify the frequency and initial phase,
respectively, of the carrier signal. The Symbol period parameter must equal
the sample time of the input signal, while the Output sample time parameter
determines the sample time of the output signal.

This block uses a baseband representation of the modulated signal as an
intermediate result during internal computations. The Baseband samples per
symbol parameter indicates how many baseband samples correspond to each
integer or binary word in the input, before the block converts them to a
passband output.

Rectangular QAM Modulator Passband

2-500

The timing-related parameters must satisfy these relationships:

• Symbol period > (Carrier frequency)-1

• Output sample time < [2*Carrier frequency + 2/(Symbol period)]-1

Furthermore, Carrier frequency is typically much larger than the highest
frequency of the unmodulated signal.

Note A model containing this block must use a variable-step solver. To
configure a model so that it uses a variable-step solver, select Simulation
parameters from the model window’s Simulation menu and then set the
Type parameter on the Solver panel to Variable-step.

Rectangular QAM Modulator Passband

2-501

Dialog Box

M-ary number
The number of points in the signal constellation. It must have the form 2K
for some positive integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding
integer. This field is active only when Input type is set to Bit.

Rectangular QAM Modulator Passband

2-502

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears
only when Normalization method is set to Min. distance between
symbols.

Average power (watts)
The average power of the symbols in the constellation. This field appears
only when Normalization method is set to Average Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field appears
only when Normalization method is set to Peak Power.

Symbol period (s)
The symbol period, which must equal the sample time of the input.

Baseband samples per symbol
The number of baseband samples that correspond to each integer or binary
word in the input, before the block converts them to a passband output.

Carrier frequency (Hz)
The frequency of the carrier.

Carrier initial phase (rad)
The initial phase of the carrier in radians.

Output sample time
The sample time of the output signal.

Pair Block Rectangular QAM Demodulator Passband

See Also General QAM Modulator Passband, Rectangular QAM Modulator Baseband

References [1] Smith, Joel G. “Odd-Bit Quadrature Amplitude-Shift Keying.” IEEE
Transactions on Communications, vol. COM-23, March 1975. 385-389.

Rician Fading Channel

2-503

2Rician Fading ChannelPurpose Simulate a Rician fading propagation channel

Library Channels

Description The Rician Fading Channel block implements a baseband simulation of a
Rician fading propagation channel. This block is useful for modeling mobile
wireless communication systems when the transmitted signal can travel to the
receiver along a dominant line-of-sight or direct path. If the signal can travel
along a line-of-sight path and also along other fading paths, then you can use
this block in parallel with the Multipath Rayleigh Fading Channel block. For
details about fading channels, see the works listed in “References” on
page 2-505.

The input can be either a scalar or a frame-based column vector. The input is
a complex signal.

Fading causes the signal to spread and become diffuse. The K-factor
parameter, which is part of the statistical description of the Rician
distribution, represents the ratio between direct-path (unspread) power and
diffuse power. The ratio is expressed linearly, not in decibels. While the Gain
parameter controls the overall gain through the channel, the K-factor
parameter controls the gain’s partition into direct and diffuse components.

Relative motion between the transmitter and receiver causes Doppler shifts in
the signal frequency. The Jakes PSD (power spectral density) determines the
spectrum of the Rician process.

The Sample time parameter is the time between successive elements of the
input signal. Note that if the input is a frame-based column vector of length n,
then the frame period (as Simulink’s Probe block reports, for example) is
n*Sample time.

The Delay parameter specifies a time delay in seconds and the Gain parameter
specifies a gain that applies to the input signal. Both parameters are scalars.

Rician Fading Channel

2-504

Dialog Box

K-factor
The ratio of power in the direct path to diffuse power. The ratio is expressed
linearly, not in decibels.

Maximum Doppler shift (Hz)
A positive scalar that indicates the maximum Doppler shift.

Sample time
The period of each element of the input signal.

Delay (s)
A scalar that specifies the propagation delay.

Gain (dB)
A scalar that specifies the gain.

Initial seed
The scalar seed for the Gaussian noise generator.

Rician Fading Channel

2-505

See Also Rician Noise Generator, Multipath Rayleigh Fading Channel

References [1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam, Simulation
of Communication Systems, Second edition, New York, Kluwer
Academic/Plenum, 2000.

[2] Jakes, William C., ed. Microwave Mobile Communications. New York: IEEE
Press, 1974.

[3] Lee, William C. Y. Mobile Communications Design Fundamentals, 2nd ed.
New York: Wiley, 1993.

Rician Noise Generator

2-506

2Rician Noise Generator Purpose Generate Rician distributed noise

Library Noise Generators sublibrary of Comm Sources

Description The Rician Noise Generator block generates Rician distributed noise. The
Rician probability density function is given by

where:

• σ is the standard deviation of the Gaussian distribution that underlies the
Rician distribution noise

• , where mI and mQ are the mean values of two independent

Gaussian components

• I0 is the modified 0th-order Bessel function of the first kind given by

Note that m and are not the mean value and standard deviation for the
Rician noise.

You must specify the Initial seed for the random number generator. When it
is a constant, the resulting noise is repeatable. The vector length of the Initial
seed parameter should equal the number of columns in a frame-based output
or the number of elements in a sample-based output. The set of numerical
parameters above the Initial seed parameter in the dialog box can consist of
vectors having the same length as the Initial seed, or scalars.

Initial Seed
The scalar Initial seed parameter initializes the random number generator
that the block uses to generate its Rician-distributed complex random process.

f x()
x

σ2
------I0

mx

σ2
--------⎝ ⎠
⎛ ⎞ e

x2 m2+
2σ2

-------------------–

x 0≥

0 x 0<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

m2 mI
2 mQ

2+=

I0 y() 1
2π
------ ey tcos td

π–

π

∫=

σ

Rician Noise Generator

2-507

For best results, the Initial seed should be a prime number greater than 30.
Also, if there are other blocks in a model that have an Initial seed parameter,
you should choose different initial seeds for all such blocks.

You can choose seeds for the Rician Noise Generator block using the
Communications Blockset’s randseed function. At the MATLAB prompt, type
the command

randseed

This returns a random prime number greater than 30. Typing randseed again
produces a different prime number. If you add an integer argument, randseed
always returns the same prime for that integer. For example, randseed(5)
always returns the same answer.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed and Sigma parameters becomes
the number of columns in a frame-based output or the number of elements in
a sample-based vector output. Also, the shape (row or column) of the Initial
seed and Sigma parameters becomes the shape of a sample-based
two-dimensional output signal.

Rician Noise Generator

2-508

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Specification method

Either K-factor or Quadrature components.

Rician K-factor

K = m2/(2σ2), where m is as in the Rician probability density function. This
field appears only if Specification method is K-factor.

In-phase component (mean), Quadrature component (mean)
The mean values mI and mQ, respectively, of the Gaussian components.
These fields appear only if Specification method is Quadrature
components.

Sigma
The variable σ in the Rician probability density function.

Initial seed
The initial seed value for the random number generator.

Rician Noise Generator

2-509

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Rician Fading Channel

References [1] Proakis, John G. Digital Communications, Third edition. New York:
McGraw Hill, 1995.

Sampled Quantizer Encode

2-510

2Sampled Quantizer EncodePurpose Quantize a signal, indicating quantization index, coded signal, and distortion

Library Source Coding

Description The Sampled Quantizer Encode block encodes an input signal using scalar
quantization. The block outputs the quantization levels (or quantization index)
of the input signal, the encoded signal, and the mean square distortion.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. This block processes each vector element independently. Each output
signal is a vector of the same length as the input signal.

The Quantization partition parameter is a length-n real vector whose entries
are in strictly ascending order. The first output signal corresponding to an
input signal of x is:

• 0 if x ≤ Quantization partition(1)

• m if Quantization partition(m) < x ≤ Quantization partition(m+1)

• n if Quantization partition(n) < x

The Quantization codebook parameter, whose length exceeds the length of
Quantization partition by one, prescribes a value for each partition in the
quantization. The first element of Quantization codebook is the value for the
interval between negative infinity and the first element of Quantization
partition. The second output signal from this block contains the quantization
of the input based on the quantization levels and prescribed values.

At a given time, the third output signal measures the mean square distortion
between the input and the second output, considering the stream of data up
through that time.

You can use the function lloyds in the Communications Toolbox with a
representative sample of your data as training data, to obtain appropriate
partition and codebook parameters.

Sampled Quantizer Encode

2-511

Dialog Box

Quantization partition
The vector of endpoints of the partition intervals. The elements must be in
strictly ascending order.

Quantization codebook
The vector of output values assigned to each partition.

Input signal vector length
The length of the input signal.

Sample time
The output sample time.

Pair Block Quantizer Decode

See Also Enabled Quantizer Encode; lloyds (Communications Toolbox)

Scatter Plot

2-512

2Scatter PlotPurpose

Scrambler

2-513

2ScramblerPurpose Scramble the input signal

Library Sequence Operations, in Basic Comm Functions

Description The Scrambler block scrambles the scalar input signal. If the Calculation base
parameter is N, then the input values must be integers between 0 and N-1.

One purpose of scrambling is to reduce the length of strings of 0s or 1s in a
transmitted signal, since a long string of 0s or 1s may cause transmission
synchronization problems. Below is a schematic of the scrambler. All adders
perform addition modulo N.

At each time step, the input causes the contents of the registers to shift
sequentially. Each switch in the scrambler is on or off as defined by the
Scramble polynomial parameter. You can specify the polynomial by listing its
coefficients in order of ascending powers of z-1, or by listing the powers of z that
appear in the polynomial with a coefficient of 1. For example p = [1 0 0 0 0 0 1
0 1] and p = [0 -6 -8] both represent the polynomial p(z-1) = 1 + z-6 + z-8.

The Initial states parameter lists the states of the scrambler’s registers when
the simulation starts. The elements of this vector must be integers between 0
and N-1. The vector length of this parameter must equal the order of the
scramble polynomial. (If the Scramble polynomial parameter is a vector that
lists the coefficients in order, then the order of the scramble polynomial is one
less than the vector length.)

1 2 M-1 M

+

Input data

++

+

Scrambled data

Scrambler

2-514

Dialog Box

Calculation base
The calculation base N. The input and output of this block are integers in
the range [0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states
The states of the scrambler’s registers when the simulation starts.

Pair Block Descrambler

See Also PN Sequence Generator

SSB AM Demodulator Baseband

2-515

2SSB AM Demodulator Baseband Purpose Demodulate SSB-AM-modulated data

Library Analog Baseband Modulation, in Modulation

Description The SSB AM Demodulator Baseband block demodulates a signal that was
modulated using single-sideband amplitude modulation. The input is a
baseband representation of the modulated signal. The input is complex, while
the output is real. The input must be a sample-based scalar signal.

In the course of demodulating, the block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Initial phase (rad)
The initial phase in the corresponding SSB AM Modulator Baseband block.

SSB AM Demodulator Baseband

2-516

Sample time
The sample time of the output signal.

Pair Block SSB AM Modulator Baseband

See Also DSB AM Demodulator Baseband, DSBSC AM Demodulator Baseband

SSB AM Demodulator Passband

2-517

2SSB AM Demodulator Passband Purpose Demodulate SSB-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The SSB AM Demodulator Passband block demodulates a signal that was
modulated using single-sideband amplitude modulation. The input is a
passband representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

In the course of demodulating, this block uses a filter whose transfer function
is described by the Lowpass filter numerator and Lowpass filter
denominator parameters.

Dialog Box

Carrier frequency (Hz)
The carrier frequency in the corresponding SSB AM Modulator Passband
block.

Lowpass filter numerator
The numerator of the lowpass filter transfer function. It is represented as
a vector that lists the coefficients in order of descending powers of s.

SSB AM Demodulator Passband

2-518

Lowpass filter denominator
The denominator of the lowpass filter transfer function. It is represented
as a vector that lists the coefficients in order of descending powers of s. For
an FIR filter, set this parameter to 1.

Initial phase (rad)
The initial phase of the carrier in radians.

Sample time
The sample time of the output signal.

Pair Block SSB AM Modulator Passband

See Also SSB AM Demodulator Baseband, DSB AM Demodulator Passband, DSBSC
AM Demodulator Passband

SSB AM Modulator Baseband

2-519

2SSB AM Modulator Baseband Purpose Modulate using single-sideband amplitude modulation

Library Analog Baseband Modulation, in Modulation

Description The SSB AM Modulator Baseband block modulates using single-sideband
amplitude modulation with a Hilbert transform filter. The output is a
baseband representation of the modulated signal. The input signal is real,
while the output signal is complex. The input must be a sample-based scalar
signal.

SSB AM Modulator Baseband transmits either the lower or upper sideband
signal, but not both. To control which sideband it transmits, use the “upper”
sideband or “lower” sideband parameter.

If the input is u(t) as a function of time t, then the output is

where θ is the Initial phase parameter and û(t) is the Hilbert transform of the
input u(t). The plus sign indicates the upper sideband and the minus sign
indicates the lower sideband.

Hilbert Tranform Filter Parameters
This block uses a Hilbert transform filter, possibly with a compensator. The
filter produces a Hilbert transform of its input signal. These mask parameters
relate to the Hilbert transform filter:

• The Time delay for Hilbert transform filter parameter specifies the delay
in the filter design. You should choose a value of the form

(N+1/2)*(Sample time parameter)

where N is a positive integer.

• The Bandwidth of the input signal parameter is the estimated highest
frequency component in the input message signal. This parameter is used to
design a compensator for the Hilbert transform filter, which would force the
message signal amplitude to remain within the assigned range.

If this parameter is either 0 or larger than 1/(2*Sample time), then the block
does not generate a compensator.

u t() jû t()±()ejθ

SSB AM Modulator Baseband

2-520

This block uses the hilbiir function in the Communications Toolbox to design
the Hilbert transform filter.

Dialog Box

Initial phase (rad)
The phase offset, θ, of the modulated signal.

Bandwidth of the input signal (Hz)
The highest frequency component of the message signal. To avoid using a
compensator in the Hilbert transform filter design, set this to 0.

Time delay for Hilbert transform filter (s)
The time delay in the design of the Hilbert transform filter.

Sample time
The sample time of the Hilbert transform filtering.

“upper” sideband or “lower” sideband
A string that specifies whether to transmit the upper or lower sideband.
Choices are 'upper' and 'lower'.

Pair Block SSB AM Demodulator Baseband

See Also DSB AM Modulator Baseband, DSBSC AM Modulator Baseband

SSB AM Modulator Baseband

2-521

References [1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.:
Addison-Wesley, 1976.

SSB AM Modulator Passband

2-522

2SSB AM Modulator Passband Purpose Modulate using single-sideband amplitude modulation

Library Analog Passband Modulation, in Modulation

Description The SSB AM Modulator Passband block modulates using single-sideband
amplitude modulation with a Hilbert transform filter. The output is a passband
representation of the modulated signal. Both the input and output signals are
real sample-based scalar signals.

SSB AM Modulator Passband transmits either the lower or upper sideband
signal, but not both. To control which sideband it transmits, use the “upper”
sideband or “lower” sideband parameter.

If the input is u(t) as a function of time t, then the output is

where:

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

• û(t) is the Hilbert transform of the input u(t).

• The minus sign indicates the upper sideband and the plus sign indicates the
lower sideband.

Hilbert Tranform Filter Parameters
This block uses a Hilbert transform filter, possibly with a compensator. These
mask parameters relate to the Hilbert transform filter:

• The Time delay for Hilbert transform filter parameter specifies the delay
in the filter design. You should choose a value of the form

(N+1/2)*(Sample time parameter)

where N is a positive integer.

• The Bandwidth of the input signal parameter is the estimated highest
frequency component in the input message signal.

This parameter is used to design a compensator for the Hilbert transform
filter, which would force the message signal amplitude to remain within the

u t() fct θ+()cos û t() fct θ+()sin+−

SSB AM Modulator Passband

2-523

assigned range. If this parameter is either 0 or larger than 1/(2*Sample
time), then the block does not generate a compensator.

This block uses the hilbiir function in the Communications Toolbox to design
the Hilbert transform filter.

Typically, an appropriate Carrier frequency value is much higher than the
highest frequency of the input signal. To avoid having to use a high carrier
frequency and consequently a high sampling rate, you can use baseband
simulation (SSB AM Modulator Baseband block) instead of passband
simulation.

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The phase offset, θ, of the modulated signal.

Bandwidth of the input signal (Hz)
The highest frequency component of the message signal. To avoid using a
compensator in the Hilbert transform filter design, set this to 0.

SSB AM Modulator Passband

2-524

Time delay for Hilbert transform filter (s)
The time delay in the design of the Hilbert transform filter.

Sample time
The sample time of the Hilbert transform filtering.

“upper” sideband or “lower sideband”
A string that specifies whether to transmit the upper or lower sideband.
Choices are 'upper' and 'lower'.

Pair Block SSB AM Demodulator Passband

See Also SSB AM Modulator Baseband, DSB AM Modulator Passband, DSBSC AM
Modulator Passband; hilbiir (Communications Toolbox)

References [1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.:
Addison-Wesley, 1976.

Tanh Nonlinearity

2-525

2Tanh NonlinearityPurpose

Triggered Read From File

2-526

2Triggered Read From File Purpose Read from a file, refreshing the output at rising edges of an input signal

Library Controlled Sources sublibrary of Comm Sources

Description The Triggered Read From File block reads a new record from a file only at the
rising edge of the input trigger signal. The output is a sample-based signal.

Note The triggered behavior of this block is one difference between this block
and Simulink’s From File block. However, the From File block is useful for
reading platform-independent MAT-files.

The file can be an ASCII text file, a file containing integer or floating point
numbers, or a binary file (in the format of the C fwrite function). The file must
be either in the current working directory on the MATLAB path.

When a rising edge of the input trigger signal is detected, this block reads from
the file a record whose length is specified in the parameter Output vector
length. The first reading always occurs at the first rising edge. After that, if
the Decimation parameter is a positive integer k, then the block reads at
every kth rising edge. If Decimation is 1, then the block reads at every rising
edge.

When the block reaches the end-of-file marker, it either:

• Rereads from the beginning of the file, if the Cyclic repeat box is checked, or

• Outputs zeros, if the Cyclic repeat box is not checked

If the Data type parameter is ASCII, then the output is an integer. The
mapping between decimal integers and ASCII characters is shown below.

Integer ASCII Integer ASCII Integer ASCII Integer ASCII

0 NUL 32 SP 64 @ 96 \
1 SOH 33 ! 65 A 97 a
2 STX 34 “ 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d

Triggered Read From File

2-527

5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ‘ 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ 127 DEL

Integer ASCII Integer ASCII Integer ASCII Integer ASCII

Triggered Read From File

2-528

Dialog Box

File name
The filename, including its extension, as a string.

Data type
The data type. Choices are ASCII, binary, float, and integer.

Decimation
A decimation factor. If it is 1, then the block reads at every rising edge.

Output vector length
The vector length of the block’s output.

Cyclic repeat
Specifies whether to cycle continuously through the contents of File name
or to output only zeros after reaching the end-of-file marker.

Threshold in detecting trigger signal
The threshold for the rising edge of the trigger signal.

Pair Block Triggered Write to File

See Also To File (Simulink)

Triggered Write to File

2-529

2Triggered Write to File Purpose Write to a file at each rising edge of an input signal

Library Comm Sinks

Description The Triggered Write to File block creates a file containing selected data from
the input signal. Unlike Simulink’s To File block, the Triggered Write to File
block writes new data to the file only at the rising edge of the input trigger
signal. However, the To File block is useful for creating platform-independent
MAT-files.

The file can be an ASCII text file, a file containing integer or floating-point
numbers, or a binary file (in the format of the C fwrite function). You specify
the file type using the Data type parameter. If Data type is ASCII then this
block converts the data into ASCII characters before writing, using the
mapping shown on the reference page for the Triggered Read From File block.
For example, an input of 65 would cause the block to write the character “A” to
the file. Other file types receive the data directly.

Caution If the destination file already exists, then this block overwrites it.

The first input signal contains the data to write. This input must be
sample-based. The second input signal is a sample-based scalar trigger signal
that controls the timing of writing. When a rising edge of the input trigger
signal is detected, this block writes the elements of the data signal to the file.
The file does not contain information about the dimension or orientation of the
data input, however.

The first write always occurs at the first rising edge. After that, the
Decimation parameter determines how many triggers the block receives
between successive file writes. Setting this parameter to 1 causes the block to
write at every rising edge.

Triggered Write to File

2-530

Dialog Box

File name
The filename, including its extension, as a string.

Data type
The data type. Choices are ASCII, binary, float, and integer.

Decimation
A decimation factor. If it is 1, then the block writes at every rising edge.

Threshold in detecting trigger signal
The threshold for the rising edge of the trigger signal.

Pair Block Triggered Read From File

See Also To File (Simulink)

Uniform Noise Generator

2-531

2Uniform Noise Generator Purpose Generate uniformly distributed noise between the upper and lower bounds

Library Noise Generators sublibrary of Comm Sources

Description The Uniform Noise Generator block generates uniformly distributed noise. The
output data of this block is uniformly distributed between the specified lower
and upper bounds. The upper bound must be greater than or equal to the lower
bound.

You must specify the Initial seed in the simulation. When it is a constant, the
resulting noise is repeatable.

If all the elements of the output vector are to be independent and identically
distributed (i.i.d.), then you can use a scalar for the Noise lower bound and
Noise upper bound parameters. Alternatively, you can specify the range for
each element of the output vector individually, by using vectors for the Noise
lower bound and Noise upper bound parameters. If the bounds are vectors,
then their length must equal the length of the Initial seed parameter.

Attributes of Output Signal
The output signal can be a frame-based matrix, a sample-based row or column
vector, or a sample-based one-dimensional array. These attributes are
controlled by the Frame-based outputs, Samples per frame, and Interpret
vector parameters as 1-D parameters. See “Signal Attribute Parameters for
Random Sources” in Using the Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the number of
columns in a frame-based output or the number of elements in a sample-based
vector output. Also, the shape (row or column) of the Initial seed parameter
becomes the shape of a sample-based two-dimensional output signal.

Uniform Noise Generator

2-532

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Noise lower bound, Noise upper bound

The lower and upper bounds of the interval over which noise is uniformly
distributed.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based
matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box
is active only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This
field is active only if Frame-based outputs is checked.

Uniform Noise Generator

2-533

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is active only
if Frame-based outputs is unchecked.

See Also Random Source (DSP Blockset); rand (built-in MATLAB function)

Unipolar to Bipolar Converter

2-534

2Unipolar to Bipolar ConverterPurpose Map a unipolar signal in the range [0, M-1] into a bipolar signal

Library Utility Functions

Description The Unipolar to Bipolar Converter block maps the unipolar input signal to a
bipolar output signal. If the input consists of integers between 0 and M-1,
where M is the M-ary number parameter, then the output consists of integers
between -(M-1) and M-1. If M is even, then the output is odd, and vice-versa.

The table below shows how the block’s mapping depends on the Polarity
parameter.

Dialog Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive (respectively, Negative) causes the block to maintain
(respectively, reverse) the relative ordering of symbols in the alphabets.

Examples If the input is [0; 1; 2; 3], the M-ary number parameter is 4, and the Polarity
parameter is Positive, then the output is [-3; -1; 1; 3]. Changing the Polarity
parameter to Negative changes the output to [3; 1; -1; -3].

Polarity Parameter Value Output Corresponding to Input Value of k

Positive 2k-(M-1)

Negative -2k+(M-1)

Unipolar to Bipolar Converter

2-535

Pair Block Bipolar to Unipolar Converter

Viterbi Decoder

2-536

2Viterbi Decoder Purpose Decode convolutionally encoded data using the Viterbi algorithm

Library Convolutional sublibrary of Channel Coding

Description The Viterbi Decoder block decodes input symbols to produce binary output
symbols. This block can process several symbols at a time for faster
performance.

Input and Output Sizes
If the convolutional code uses an alphabet of 2n possible symbols, then this
block’s input vector length is L*n for some positive integer L. Similarly, if the
decoded data uses an alphabet of 2k possible output symbols, then this block’s
output vector length is L*k. The integer L is the number of frames that the
block processes in each step.

The input can be either a sample-based vector with L = 1, or a frame-based
column vector with any positive integer for L.

Input Values and Decision Types
The entries of the input vector are either bipolar, binary, or integer data,
depending on the Decision type parameter.

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of Values

Unquantized Real numbers +1: logical zero

-1: logical one

Viterbi Decoder

2-537

To illustrate the soft decision situation more explicitly, the table below lists
interpretations of values for 3-bit soft decisions.

Operation Modes for Frame-Based Inputs
If the input signal is frame-based, then the block has three possible methods
for transitioning between successive frames. The Operation mode parameter
controls which method the block uses:

Hard Decision 0, 1 0: logical zero

1: logical one

Soft Decision Integers between 0
and 2b-1, where b is
the Number of soft
decision bits
parameter

0: most confident decision for
logical zero

2b-1: most confident decision
for logical one

Other values represent less
confident decisions

Input Value Interpretation

0 Most confident zero

1 Second most confident zero

2 Third most confident zero

3 Least confident zero

4 Least confident one

5 Third most confident one

6 Second most confident one

7 Most confident one

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of Values

Viterbi Decoder

2-538

• In Continuous mode, the block saves its internal state metric at the end of
each frame, for use with the next frame. Each traceback path is treated
independently.

• In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the best metric and always ends in
the all-zeros state. This mode is appropriate when the corresponding
Convolutional Encoder block has its Reset parameter set to On each frame.

• In Terminated mode, the block treats each frame independently, and the
traceback path always starts and ends in the all-zeros state. This mode is
appropriate when the uncoded message signal (that is, the input to the
corresponding Convolutional Encoder block) has enough zeros at the end of
each frame to fill all memory registers of the encoder. If the encoder has k
input streams and constraint length vector constr (using the polynomial
description), then “enough” means k*max(constr-1).

In the special case when the frame-based input signal contains only one
symbol, the Continuous mode is most appropriate.

Traceback Depth and Decoding Delay
The Traceback depth parameter, D, influences the decoding delay. The
decoding delay is the number of zero symbols that precede the first decoded
symbol in the output.

• If the input signal is sample-based, then the decoding delay consists of D zero
symbols

• If the input signal is frame-based and the Operation mode parameter is set
to Continuous, then the decoding delay consists of D zero symbols

• If the Operation mode parameter is set to Truncated or Terminated, then
there is no output delay and the Traceback depth parameter must be less
than or equal to the number of symbols in each frame.

If the code rate is 1/2, then a typical Traceback depth value is about five times
the constraint length of the code.

Reset Port
The reset port is usable only when the Operation mode parameter is set to
Continuous. Checking the Reset input check box causes the block to have an

Viterbi Decoder

2-539

additional input port, labeled Rst. When the Rst input is nonzero, the decoder
returns to its initial state by configuring its internal memory as follows:

• Sets the all-zeros state metric to zero

• Sets all other state metrics to the maximum value

• Sets the traceback memory to zero

Using a reset port on this block is analogous to setting the Reset parameter in
the Convolutional Encoder block to On nonzero Rst input.

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder. Use the same value here and in the corresponding
Convolutional Encoder block.

Decision type
Unquantized, Hard Decision, or Soft Decision.

Number of soft decision bits
The number of soft decision bits used to represent each input. This field is
active only when Decision type is set to Soft Decision.

Traceback depth
The number of trellis branches used to construct each traceback path.

Viterbi Decoder

2-540

Operation mode
Method for transitioning between successive input frames. For
frame-based input, the choices are Continuous, Terminated, and
Truncated. Sample-based input must use the Continuous mode.

Reset input
When you check this box, the decoder has a second input port labeled Rst.
Providing a nonzero input value to this port causes the internal memory to
be set to its initial state prior to processing the input data.

See Also Convolutional Encoder, APP Decoder

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data
Communications Principles. New York: Plenum, 1992.

[3] Heller, Jerrold A. and Irwin Mark Jacobs. “Viterbi Decoding for Satellite
and Space Communication.” IEEE Transactions on Communication
Technology, vol. COM-19, October 1971. 835-848.

Voltage-Controlled Oscillator

2-541

2Voltage-Controlled OscillatorPurpose Implement a voltage-controlled oscillator

Library Controlled Sources sublibrary of Comm Sources

Description The Voltage-Controlled Oscillator (VCO) block generates a signal whose
frequency shift from the Oscillation frequency parameter is proportional to
the input signal. The input signal is interpreted as a voltage. If the input signal
is u(t), then the output signal is

where Ac is the Output amplitude parameter, fc is the Oscillation frequency
parameter, kc is the Input sensitivity parameter, and ϕ is the Initial phase
parameter.

This block uses a continuous-time integrator to interpret the equation above.

The input and output signals are both sample-based scalars.

Dialog Box

Output amplitude
The amplitude of the output.

Oscillation frequency (Hz)
The frequency of the oscillator output when the input signal is zero.

y t() Ac 2πfct 2πkc u τ()dτ
0
t
∫ ϕ+ +()cos=

Voltage-Controlled Oscillator

2-542

Input sensitivity
This value scales the input voltage and, consequently, the shift from the
Oscillation frequency value. The units of Input sensitivity are Hertz per
volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

See Also Discrete-Time VCO

Walsh Code Generator

2-543

2Walsh Code GeneratorPurpose Generate a Walsh code from an orthogonal set of codes

Library Sequence Generators sublibrary of Comm Sources

Description Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... , N - 1,
which have the following properties:

• Wj takes on the values +1 and -1.

• Wj[0] = 1 for all j.

• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.

•

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N. The Walsh Code
Generator block outputs a row of the Hadamard matrix specified by the Walsh
code index, which must be an integer in the range [0, ..., N - 1]. If you set
Walsh code index equal to an integer j, the output code has exactly j zero
crossings, for j = 0, 1, ... , N - 1.

Note, however, that the indexing in the Walsh Code Generator block is
different than the indexing in the Hadamard Code Generator block. If you set
the Walsh code index in the Walsh Code Generator block and the Code index
parameter in the Hadamard Code Generator block, the two blocks output
different codes.

WjWk
T 0

N⎩
⎨
⎧ j k≠

j k=
=

Walsh Code Generator

2-544

Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
Code length

Integer scalar that is a power of 2 specifying the length of the output code.

Code index
Integer scalar in the range [0, 1, ... , N - 1], where N is the Code length,
specifying the number of zero crossings in the output code.

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
When checked, the block outputs a frame-based signal. When cleared, the
block outputs a [1] unoriented scalar.

Samples per frame
The number of samples in a frame-based output signal. This field is active
only if you select the Frame-based outputs check box. If Samples per
frame is greater than the Code length, the code is cyclically repeated.

Walsh Code Generator

2-545

See also Hadamard Code Generator, OVSF Code Generator

Windowed Integrator

2-546

2Windowed Integrator Purpose Integrate over a time window of fixed length

Library Integrators, in Basic Comm Functions

Description The Windowed Integrator block integrates the input signal in discrete time,
over a sliding time window of fixed length. If the Integration window length
parameter is T, then the output at time t is the result of integrating the input
signal from t-T to t. The block assumes that the input signal is zero for all
negative t.

You can choose one of three integration methods: Forward Euler, Backward
Euler, and Trapezoidal.

The input can be either a scalar, a sample-based vector, or a frame-based row
vector. The block processes each vector element independently. If the input
signal is a vector, then the output is a vector of the same length. This length
appears as the Input vector size parameter.

Dialog Box

Integration method
The integration method. Choices are Forward Euler, Backward Euler,
and Trapezoidal.

Windowed Integrator

2-547

Input vector size
The length of the input vector.

Integration window length (s)
The length of the interval of integration, in seconds.

Sample time
The integration sample time. This must not exceed the Integration
window length parameter.

Examples Integrate a scalar constant signal whose value is 1, for 10 seconds, using these
parameters:

• Integration method = Forward Euler

• Input vector size = 1

• Integration window length = 4

• Sample time = .5

You can use a Simulink Constant block for the input signal. The Simulink
Scope block shows the output below.

Notice that the output from time 0 to time 4 is a discrete approximation of a
ramp. During this period, the interval of integration increases with time. Also
notice that the output after time 4 is a constant value of 4. This is the result of
integrating the value 1 over the full integration window length of 4 seconds.

Windowed Integrator

2-548

See Also Discrete Modulo Integrator, Integrate and Dump, Discrete-Time Integrator
(Simulink)

I-1

Index

A
A-Law Compressor block 2-45
A-Law Expander block 2-47
Algebraic Deinterleaver block 2-49
Algebraic Interleaver block 2-51
analog modulation libraries

reference for 2-25
APP Decoder block 2-54
AWGN Channel block 2-58

B
Barker Code Generator block 2-64
Baseband PLL block 2-66
Basic Comm Functions library 2-36
BCH Decoder block 2-68
BCH Encoder block 2-70
Bernoulli Binary Generator block 2-72
Binary Cyclic Decoder block 2-74
Binary Cyclic Encoder block 2-76
Binary Error Pattern Generator block 2-78
Binary Linear Decoder block 2-85
Binary Linear Encoder block 2-87
Binary Symmetric Channel block 2-91
Binary-Input RS Encoder block 2-81
Binary-Output RS Decoder block 2-88
Bipolar to Unipolar Converter block 2-92
Bit to Integer Converter block 2-94
block coding library

reference for 2-11
block interleaving library

reference for 2-15
BPSK Demodulator Baseband block 2-95
BPSK Modulator Baseband block 2-97

C
Channels library

reference for 2-32
Charge Pump PLL block 2-99
Comm Sinks library

reference for 2-8
Comm Sources library

reference for 2-3
commstartup

reference 1-5
Complex Phase Difference block 2-102
Complex Phase Shift block 2-103
Continuous-Time Eye and Scatter Diagrams block

2-104
convolutional coding library

reference for 2-13
Convolutional Deinterleaver block 2-108
Convolutional Encoder block 2-110
Convolutional Interleaver block 2-112
convolutional interleaving library

reference for 2-17
CPFSK Demodulator Baseband block 2-114
CPFSK Demodulator Passband block 2-117
CPFSK Modulator Baseband block 2-121
CPFSK Modulator Passband block 2-124
CPM Demodulator Baseband block 2-128
CPM Demodulator Passband block 2-133
CPM Modulator Baseband block 2-138
CPM Modulator Passband block 2-143
CRC library

reference for 2-13
CRC-N Generator block 2-148
CRC-N Syndrome Detector block 2-150

Index

I-2

D
Data Mapper block 2-152
DBPSK Demodulator Baseband block 2-155
DBPSK Modulator Baseband block 2-157
Deinterlacer block 2-159
Derepeat block 2-160
Descrambler block 2-163
Differential Decoder block 2-165
Differential Encoder block 2-166
digital modulation libraries

reference for 2-19
Discrete Modulo Integrator block 2-167
Discrete-Time Eye Diagram Scope block 2-169
Discrete-Time Scatter Plot Scope block 2-181
Discrete-Time Signal Trajectory Scope block

2-190
Discrete-Time VCO block 2-199
DPCM Decoder block 2-201
DPCM Encoder block 2-203
DQPSK Demodulator Baseband block 2-205
DQPSK Modulator Baseband block 2-207
DSB AM Demodulator Baseband block 2-211
DSB AM Demodulator Passband block 2-213
DSB AM Modulator Baseband block 2-215
DSB AM Modulator Passband block 2-216
DSBSC AM Demodulator Baseband block 2-218
DSBSC AM Demodulator Passband block 2-220
DSBSC AM Modulator Baseband block 2-222
DSBSC AM Modulator Passband block 2-223

E
Enabled Quantizer Encode block 2-225
Error Detection and Correction library

reference for 2-10
Error Rate Calculation block 2-227

F
FM Demodulator Baseband block 2-234
FM Demodulator Passband block 2-236
FM Modulator Baseband block 2-238
FM Modulator Passband block 2-243
Free Space Path Loss block 2-240

G
Gaussian Noise Generator block 2-245
General Block Deinterleaver block 2-249
General Block Interleaver block 2-251
General CRC Generator block 2-252
General CRC Syndrome Detector block 2-255
General Multiplexed Deinterleaver block 2-258
General Multiplexed Interleaver block 2-260
General QAM Demodulator Baseband block 2-262
General QAM Demodulator Passband block 2-264
General QAM Modulator Baseband block 2-267
General QAM Modulator Passband block 2-269
GMSK Demodulator Baseband block 2-272
GMSK Demodulator Passband block 2-275
GMSK Modulator Baseband block 2-278
GMSK Modulator Passband block 2-281
Gold Sequence Generator block 2-284

H
Hadamard Code Generator block 2-291
Hamming Decoder block 2-294
Hamming Encoder block 2-296
Helical Deinterleaver block 2-298
Helical Interleaver block 2-301

I
I/Q Imbalance block 2-318

Index

I-3

Insert Zero block 2-304
Integer to Bit Converter block 2-314
Integer-Input RS Encoder block 2-307
Integer-Output RS Decoder block 2-311
Integrate and Dump block 2-315
Integrators library 2-36
Interlacer block 2-317
Interleaving library

reference for 2-15

K
Kasami Sequence Generator block 2-323

L
Linearized Baseband PLL block 2-330

M
Matrix Deinterleaver block 2-332
Matrix Helical Scan Deinterleaver block 2-334
Matrix Helical Scan Interleaver block 2-336
Matrix Interleaver block 2-339
M-DPSK Demodulator Baseband block 2-341
M-DPSK Demodulator Passband block 2-344
M-DPSK Modulator Baseband block 2-347
M-DPSK Modulator Passband block 2-351
Memoryless Nonlinearity block 2-354
M-FSK Demodulator Baseband block 2-364
M-FSK Demodulator Passband block 2-367
M-FSK Modulator Baseband block 2-370
M-FSK Modulator Passband block 2-373
Modulation library

reference for 2-19
Modulo Integrator block 2-377
M-PAM Demodulator Baseband block 2-378

M-PAM Demodulator Passband block 2-381
M-PAM Modulator Baseband block 2-385
M-PAM Modulator Passband block 2-389
M-PSK Demodulator Baseband block 2-393
M-PSK Demodulator Passband block 2-396
M-PSK Modulator Baseband block 2-399
M-PSK Modulator Passband block 2-404
MSK Demodulator Baseband block 2-407
MSK Demodulator Passband block 2-409
MSK Modulator Baseband block 2-412
MSK Modulator Passband block 2-414
Mu-Law Compressor block 2-417
Mu-Law Expander block 2-418
Multipath Rayleigh Fading Channel block 2-419

O
OQPSK Demodulator Baseband block 2-422
OQPSK Demodulator passband block 2-424
OQPSK Modulator Baseband block 2-427
OQPSK Modulator Passband block 2-430
OVSF Code Generator block 2-433

P
Phase Noise block 2-446
Phase/Frequency Offset block 2-438
Phase-Locked Loop block 2-443
PM Demodulator Baseband block 2-450
PM Demodulator Passband block 2-452
PM Modulator Baseband block 2-454
PM Modulator Passband block 2-455
PN Sequence Generator block 2-457
Poisson Integer Generator block 2-465
Puncture block 2-468

Index

I-4

Q
QPSK Demodulator Baseband block 2-470
QPSK Modulator Baseband block 2-472
Quantizer Decode block 2-475

R
Random Deinterleaver block 2-476
Random Integer Generator block 2-477
Random Interleaver block 2-480
randseed 2-245
randseed

reference 1-6
Rayleigh Noise Generator block 2-481
Receiver Thermal Noise block 2-484
Rectangular QAM Demodulator Baseband block

2-488
Rectangular QAM Demodulator Passband block

2-491
Rectangular QAM Modulator Baseband block

2-495
Rectangular QAM Modulator Passband block

2-499
Rician Fading Channel block 2-503
Rician Noise Generator block 2-506

S
Sampled Quantizer Encode block 2-510
Scatter Plot block 2-512
Scrambler block 2-513
Sequence Operations library 2-37
sinks library

reference for 2-8
Source Coding library

reference for 2-9
sources library

reference for 2-3
SSB AM Demodulator Baseband block 2-515
SSB AM Demodulator Passband block 2-517
SSB AM Modulator Baseband block 2-519
SSB AM Modulator Passband block 2-522
Synchronization library

reference for 2-35

T
Tanh Nonlinearity block 2-525
Triggered Read From File block 2-526

U
Uniform Noise Generator block 2-531
Unipolar to Bipolar Converter block 2-534
Utility Functions library 2-39

V
Viterbi Decoder block 2-536
Voltage-Controlled Oscillator block 2-541

W
Walsh Code Generator block 2-543
Windowed Integrator block 2-546

	Function Reference
	Functions — Alphabetical List
	comm_links
	commlib
	commstartup
	randseed

	Block Reference
	Blocks — By Category
	Communications Sources
	Controlled Sources
	Data Sources
	Noise Generators
	Sequence Generators

	Communications Sinks
	Source Coding
	Error Detection and Correction
	Block Coding
	Convolutional Coding
	Cyclic Redundancy Check Coding

	Interleaving
	Block Interleaving
	Convolutional Interleaving

	Modulation
	Digital Baseband Modulation
	AM Sublibrary
	PM Sublibrary
	FM Sublibrary
	CPM Sublibrary
	Analog Baseband Modulation
	Digital Passband Modulation
	AM Sublibrary
	PM Sublibrary
	FM Sublibrary
	CPM Sublibrary
	Analog Passband Modulation

	Channels
	RF Impairments
	Synchronization
	Basic Communications Functions
	Integrators
	Sequence Operations

	Utility Functions

	Blocks — Alphabetical List
	A-Law Compressor
	A-Law Expander
	Algebraic Deinterleaver
	Algebraic Interleaver
	APP Decoder
	AWGN Channel
	Barker Code Generator
	Baseband PLL
	BCH Decoder
	BCH Encoder
	Bernoulli Binary Generator
	Binary Cyclic Decoder
	Binary Cyclic Encoder
	Binary Error Pattern Generator
	Binary-Input RS Encoder
	Binary Linear Decoder
	Binary Linear Encoder
	Binary-Output RS Decoder
	Binary Symmetric Channel
	Bipolar to Unipolar Converter
	Bit to Integer Converter
	BPSK Demodulator Baseband
	BPSK Modulator Baseband
	Charge Pump PLL
	Complex Phase Difference
	Complex Phase Shift
	Continuous-Time Eye and Scatter Diagrams
	Convolutional Deinterleaver
	Convolutional Encoder
	Convolutional Interleaver
	CPFSK Demodulator Baseband
	CPFSK Demodulator Passband
	CPFSK Modulator Baseband
	CPFSK Modulator Passband
	CPM Demodulator Baseband
	CPM Demodulator Passband
	CPM Modulator Baseband
	CPM Modulator Passband
	CRC-N Generator
	CRC-N Syndrome Detector
	Data Mapper
	DBPSK Demodulator Baseband
	DBPSK Modulator Baseband
	Deinterlacer
	Derepeat
	Descrambler
	Differential Decoder
	Differential Encoder
	Discrete Modulo Integrator
	Discrete-Time Eye Diagram Scope
	Discrete-Time Scatter Plot Scope
	Discrete-Time Signal Trajectory Scope
	Discrete-Time VCO
	DPCM Decoder
	DPCM Encoder
	DQPSK Demodulator Baseband
	DQPSK Modulator Baseband
	DSB AM Demodulator Baseband
	DSB AM Demodulator Passband
	DSB AM Modulator Baseband
	DSB AM Modulator Passband
	DSBSC AM Demodulator Baseband
	DSBSC AM Demodulator Passband
	DSBSC AM Modulator Baseband
	DSBSC AM Modulator Passband
	Enabled Quantizer Encode
	Error Rate Calculation
	FM Demodulator Baseband
	FM Demodulator Passband
	FM Modulator Baseband
	Free Space Path Loss
	FM Modulator Passband
	Gaussian Noise Generator
	General Block Deinterleaver
	General Block Interleaver
	General CRC Generator
	General CRC Syndrome Detector
	General Multiplexed Deinterleaver
	General Multiplexed Interleaver
	General QAM Demodulator Baseband
	General QAM Demodulator Passband
	General QAM Modulator Baseband
	General QAM Modulator Passband
	GMSK Demodulator Baseband
	GMSK Demodulator Passband
	GMSK Modulator Baseband
	GMSK Modulator Passband
	Gold Sequence Generator
	Hadamard Code Generator
	Hamming Decoder
	Hamming Encoder
	Helical Deinterleaver
	Helical Interleaver
	Insert Zero
	Integer-Input RS Encoder
	Integer-Output RS Decoder
	Integer to Bit Converter
	Integrate and Dump
	Interlacer
	I/Q Imbalance
	Kasami Sequence Generator
	Linearized Baseband PLL
	Matrix Deinterleaver
	Matrix Helical Scan Deinterleaver
	Matrix Helical Scan Interleaver
	Matrix Interleaver
	M-DPSK Demodulator Baseband
	M-DPSK Demodulator Passband
	M-DPSK Modulator Baseband
	M-DPSK Modulator Passband
	Memoryless Nonlinearity
	M-FSK Demodulator Baseband
	M-FSK Demodulator Passband
	M-FSK Modulator Baseband
	M-FSK Modulator Passband
	Modulo Integrator
	M-PAM Demodulator Baseband
	M-PAM Demodulator Passband
	M-PAM Modulator Baseband
	M-PAM Modulator Passband
	M-PSK Demodulator Baseband
	M-PSK Demodulator Passband
	M-PSK Modulator Baseband
	M-PSK Modulator Passband
	MSK Demodulator Baseband
	MSK Demodulator Passband
	MSK Modulator Baseband
	MSK Modulator Passband
	Mu-Law Compressor
	Mu-Law Expander
	Multipath Rayleigh Fading Channel
	OQPSK Demodulator Baseband
	OQPSK Demodulator Passband
	OQPSK Modulator Baseband
	OQPSK Modulator Passband
	OVSF Code Generator
	Phase/Frequency Offset
	Phase-Locked Loop
	Phase Noise
	PM Demodulator Baseband
	PM Demodulator Passband
	PM Modulator Baseband
	PM Modulator Passband
	PN Sequence Generator
	Poisson Integer Generator
	Puncture
	QPSK Demodulator Baseband
	QPSK Modulator Baseband
	Quantizer Decode
	Random Deinterleaver
	Random Integer Generator
	Random Interleaver
	Rayleigh Noise Generator
	Receiver Thermal Noise
	Rectangular QAM Demodulator Baseband
	Rectangular QAM Demodulator Passband
	Rectangular QAM Modulator Baseband
	Rectangular QAM Modulator Passband
	Rician Fading Channel
	Rician Noise Generator
	Sampled Quantizer Encode
	Scatter Plot
	Scrambler
	SSB AM Demodulator Baseband
	SSB AM Demodulator Passband
	SSB AM Modulator Baseband
	SSB AM Modulator Passband
	Tanh Nonlinearity
	Triggered Read From File
	Triggered Write to File
	Uniform Noise Generator
	Unipolar to Bipolar Converter
	Viterbi Decoder
	Voltage-Controlled Oscillator
	Walsh Code Generator
	Windowed Integrator

	Index

